
Formal modelling of a robust Wireless Sensor Network routing protocol

Kashif Saghar ∗ William Henderson∗ David Kendall∗ Ahmed Bouridane∗†
∗School of Computing, Engineering and Information Sciences, Northumbria University,

Pandon Building, Newcastle upon Tyne NE2 1XE, United Kingdom
†College of Computer and Information Sciences, King Saud University

P.O.Box 51178 Riyadh 11543, Kingdom of Saudi Arabia
kashif.saghar@unn.ac.uk

Abstract

Because of their low cost, small size, low resources and
self-organizing nature a Wireless Sensor Network (WSN) is
a potential solution in hostile environments including mili-
tary applications. However, the broadcasting nature of ra-
dio transmission; their limited computing, power and com-
munication resources; unattended and potentially hostile
nature of the environment they operate in make WSNs prone
to Denial of Service (DoS) attacks. Although many schemes
have been proposed to address DoS attacks their effective-
ness is yet to be proven. The traditional methods used (i.e.
visual inspection, computer simulations and hardware im-
plementations) can only detect errors but cannot verify that
the whole system is error free. Therefore, new techniques
to automatically determine the worst cases and hidden er-
rors in WSNs are much desired. After an initial investiga-
tion using a formal verification which clearly shows that Ar-
rive routing protocol is vulnerable to different DoS attacks,
this paper proposes a method for its security. The finding
contradicts the claim of the developers of Arrive that it is
immune to black hole attacks. Several other DoS attacks
were also found to be successful in Arrive routing protocol.
The formal model generates the trace to confirm how an at-
tack is possible in the protocol. However, it was found that
INA attacks are addressed by Arrive protocol. To our best
knowledge the results discussed in this paper have not been
presented, proved or published before.

1. Introduction

A WSN is composed of small embedded computers
(called nodes) that communicate wirelessly to perform a
particular task. Because of their low cost, small size, low
resources and self-organizing nature a WSN is a potential
solution in hostile environments and military applications.

A WSN is an adaptive embedded system because the
system as a whole tries to maintain and improve its per-
formance in the presence of uncertain/hostile environmen-
tal conditions as well as failure/destruction of some of the
nodes. WSNs can be deployed in large numbers in hos-
tile conditions and the destruction of some WSN nodes can
still achieve the desired functionality. The aim of a WSN is
to gather data from remote locations (possibly hostile) and
route it wirelessly to secure places (i.e. base station). A
node that gathers the data is called ’Source’ and the nodes
intersted in data are called ’Sinks’. Unlike in a normal net-
work each node can act as a router. The broadcast nature of
radio transmission; limited computing, power and commu-
nication resources; unattended and potentially hostile nature
of the environment are all major challenges which have to
be overcome in the process of data routing.

Attackers in hostile environments can launch different
DoS attacks to prevent data from reaching the base station.
As in the case of our recent publication [10], we use the
term Denial of Service in a general sense to mean an ad-
verse effect of any malicious external agent (attacker) on
the correct or timely delivery of data from source nodes to
the sink nodes. Again the particular focus is on the effects of
denial of service attacks on routing protocols in WSNs. A
brief summary of attacks that were considered has already
been presented in [10] and more detailed surveys of attacks
are available in [8, 13].

Many secure solutions for routing protocols have been
proposed to overcome the DoS attacks and to adapt to hos-
tile environments. These schemes are basically adaptive
software tools since they attempt to improve data routing in
the presence of faults (attacks) and degrading networks (i.e.,
when some nodes become malicious). However, the cred-
ibility of the secure schemes in the presence of attacks is
yet to be proven. The traditional methods used such visual
inspection, computer simulations and hardware implemen-
tations can only detect a few errors but cannot guaranty the
whole system to be error free. These methods can only ver-

2010 NASA/ESA Conference on Adaptive Hardware and Systems

978-1-4244-5889-9/10/$26.00 ©2010 IEEE 281

ify the presence of a fault but not its absence. We propose
in this paper a new technique based on ’formal modeling’
which can automatically check the worst cases and hidden
errors. Formal modeling can verify the system against every
single execution trace and thus can confirm that the whole
system functions as expected. The paper involves applying
this approach to check WSNs protocols rigorously against
DoS attacks.

A modeling framework, which was developed by the au-
thors [10], allows for an automatic analysis and vulner-
ability of routing protocols to different DoS attacks using
formal modeling and theorems (LTL properties). This pa-
per is an extension of the previous work. The formal model
confirms that Arrive [7], seen as a robust protocol, is indeed
vulnerable to some DoS attacks. However, in this paper UP-
PAAL [2] is used instead of Spin [5] for the modeling the
protocol. This is carried out to overcome the state space ex-
plosion problem when Spin is used to verify protocols for
bigger networks (¿5). The problem arises because of the de-
velopment of a separate channel model in Spin, which can
only provide point to point communication. UPPAAL not
only possesses all the properties of Spin but also provides
broadcast communication highly suited to WSNs. This re-
duces the model size considerably thus allowing us to check
additional number of nodes without the state space explo-
sion problem.

The rest of this paper is organized as follows: Section 2
briefly discusses the related works while a description of
Arrive protocol is given in Section 3. The proposed formal
framework including the results obtained are described in
Section 4. Conclusions and further work are presented in
Section 5.

2. Related Work

It is accepted within the research community that com-
puter simulation is often inadequate for finding errors in
routing protocols. The development of formal models to
determine various aspects of routing protocols is becoming
an important issue. Formal modeling has also been used
in the analysis of security protocols and different hidden
attacks have been discovered using formal modeling. For
example, [12] discovered faults in TinySec and LEAP pro-
tocols; the formal analysis in [11] showed successful at-
tacks in SNEP (SPINS) [9]; the work on [4] developed a
new approach (Sledge method) based on Spin [5] and ver-
ified μTESLA [9] and LEAP [14] using this method. The
most noteworthy work is presented in [1] where the authors
used Spin [5] to analyze the effect of some DoS attacks on
ad-hoc routing protocols based on Dynamic Source Rout-
ing (Ardiadne and endairA). The authors in [1] have used
an automated security evaluation process and analyzed all
topologies for networks of up to 5 nodes. This work was

extended by us in [10] to check WSN protocols rigorously
against DoS attacks and a modeling framework was devel-
oped. This framework adopted for the modeling and analy-
sis of a simple routing protocol (TinyOS Beaconing [8]) and
its robust version (with μTESLA [9]) using Spin. The for-
mal framework also revealed unknown flaws in the Rumor
Routing protocol [3] and Directed Diffusion [6] protocols.

3. Arrive Routing Protocol

Arrive protocol [7] has been developed to provide ro-
bustness against malicious and failed node attacks by main-
taining neighbor reputation. Unlike other routing protocols,
the reputation is maintained locally and is not shared with
other nodes. Therefore, the nodes cannot misrepresent their
data. It uses randomness and probabilities to reinforce the
reliable neighbors. Also packets are routed in multiple paths
to prevent a single failure affecting data to reach the sinks.
The nodes not only forward data designated to them to re-
puted nodes (Direct Participation) but also eavesdrop the
traffic. In the case of a message failure in neighborhood (a
neighbor does not forward message after receiving a mes-
sage from another neighbor), the node forwards the message
that is not addressed to it (Passive Participation). Although
this method induces extra traffic, it provides robustness.

Arrive protocol uses first a breadth technique to assign
nodes level like the TinyOS beaconing protocol [8]. The
base station has a level of 0, the nodes one hop away from
the base stations have the level of one and so on. The au-
thors have not explained this issue in detail but it is ex-
pected that a message of the following format is initiated
and broadcast by the base station:

BS → ∗ : (level, IDBS , L)

Here ’level’ is the message type, followed by the sender
ID and the level L attached. The base station initiates with
the level 0. A node upon receiving a lower level updates
its current level and rebroadcast the level message with the
new level L:

N → ∗ : (level, IDN , L)

Moreover, if a node receives a lower level beacon it will
mark the sender as its parent. On the other hand, senders
with the same lev are assigned as neighbors. The sender
nodes with higher levels are ignored. Once the setup phase
is completed a source node S unicast its data to either parent
or neighbor depending upon the node’s reputation. A node
with a lower reputation is not selected. The message format
is:

S → N : (level, IDN , [IDS , EventE)

282

The message contains the source ID and event number
E. A node N upon receiving this message again forwards it
to either parent or neighbor:

N → P : (level, IDP , [IDS , EventE)

The node sometimes acts as a passive forwarder by for-
warding the data not addressed to it. This is a probabilistic
process and requires a condition. When receiving data, a
node within the radio range can either forward it farther or
to a node outside the current node’s radio range. The de-
velopers of Arrive, however, warned that the ’Passive par-
ticipation’ must be used with caution because unidirectional
links and hidden terminal problems may cause the passively
participating nodes to act erroneously.

4. Formal Model

It is believed that DoS attacks such as black hole, hello
flood, sinkhole, spoofing and wormhole attacks are still pos-
sible in Arrive protocol and can lead to a significant data
loss. One of the aims of this paper is to apply formal mod-
eling on Arrive, using UPPAAL [2], to verify whether it is
vulnerable to DoS attacks. When modeling Arrive proto-
col, it is assumed that the channel is ideal i.e. no message
is lost because of collision or noise; the nodes are placed
in rectangular grid and have equal radio range; and that the
node density of network is limited to 4. In formal model-
ing one has to pay the price of high resources (computation,
memory etc) so the assumptions are applied to simplify the
model.

This section is further organized as follows: Subsec-
tion 4.1 briefly describes the formal model of Arrive; Sub-
section 4.2 describes the theorems or LTL properties ap-
plied on Arrive; Subsection 4.3, 4.4, 4.6, 4.5 and 4.7 de-
scribe detection of different DoS attacks by the formal
framework.

4.1. Proposed Model

The complete UPPAAL model is split into 3 parts: the
Node model, the Event Generator (EG) model and the Sink
model. The Node model starts from INIT PHASE which
indicates the setup phase. A node waits for a level message
and upon its reception it is updated. It is worth noting that
all the node levels are initialized to a very high value and
gets updated only if a lower level value is received. There is
a flag ’LevelRec’ in the model which is set when a level
beacon is received and is cleared when the level beacon
is broadcast (SEND LEVEL). A variable BusyNodes indi-
cates how many nodes are busy receiving or sending mes-
sages. The EG model also uses this variable and moves to
the next phase when this variable becomes 0.

Figure 1. Event Generator model for Arrive
Protocol

All Node models leave the setup phase and move to
data forward phase when the EG model triggers them us-
ing the ’timeout’ message. This broadcast message is used
to indicate an event to all nodes simultaneously. All nodes
initialize their parents and neighbors using InitializeParen-
tOrNeighbor() function which utilizes the topology matrix
and the levels received in the setup phase. If a node is a
source node, it senses data (SENSE DATA) and broadcast
(SEND DATA) it. Another function SelectParentOrNeigh-
bor() is used to select a neighbor before data is forwarded.

If a node is not the source, it will move to LISTEN
mode and will expect data messages. Upon receiving
data addressed to it (REC DATA DIRECT) a legitimate
node forwards it. If data is not addressed to a legitimate
node (Msg Level!=NID), it checks if the data has been ad-
dressed to its neighbor (Topology[NID][Msg Level]). If
so, the node moves to passive forwarding phase (PAS-
SIVE FORWARD) and remains in this phase for a cer-
tain time (10 clock cycles). The model checks two con-
ditions here: (i) Data has been forwarded by the observed
node during this time and (ii) Data has been forwarded
to a neighbor not within the range of current node i.e.
Topology[NID][Msg Level] is false. If any of the above
conditions is not satisfied and a certain time has elapsed
(DELAY), the Node model checks the probability to for-
ward data (PROBIBLITY CHECK) using a global function
ProbabilityCheck(). If the probability is higher than the
threshold value, the Node model will forward data (FOR-
WARD DATA) otherwise it moves back to the LISTEN lo-
cation. Another local variable ’Sender’ is used to track
sender ID of the data message in order to ensure that the
data is not sent back to it.

The Event Generator model is shown in Figure 1. The
EG model generates different events required by the pro-
tocol. The model starts with the SETUP PHASE. After
all Node models complete the setup phase (BusyNodes be-
comes 0), the nodes are triggered to move to the opera-
tion phase by sending their corresponding timeout to all

283

Figure 2. Sink model for Arrive Protocol

Node models. This message also triggers the source to ini-
tiate the data message. The model tracks the data flow and
when all nodes become idle (BusyNodes is 0), it generates
a new timeout message to enable the source node to gen-
erate a new data message. A variable ’TotalSent’ is incre-
mented each time the source generates a new message and
thus tracks the total number of messages generated by the
source. When all messages have been sent, the EG model
moves to the FINISH location. The maximum number of
data messages generated is limited by using MAXSENT
constant to reduce the state space.

The Sink model is shown in Figure 2. The sink model
immediately moves out of the initial state (START). The
function MakeWormhole() is used to generate a wormhole
tunnel if needed. The Sink model then broadcast the level
message (SEND LEVEL) with level 0. Once this done, the
model remains in LISTEN state with a self loop. This loop
is only triggered if a node within the radio range broadcast
data. The flag DataRec is set even if a single data message
is received. A global variable DataRec keeps track of the
total data messages received by the sink.

4.2. Verification

When the model was constructed, simple theorems (LTL
properties) were applied to confirm that Arrive achieves the
desired operations. The theorems applied perform the san-
ity checks and confirm that the safety & liveliness prop-
erties hold in the protocol. The liveliness properties are
defined as ’something good will eventually happen’ while
the safety properties are defined as ’nothing bad will never
happen’ [2]. Thus data which never reachs the sink can
be termed as safety violation. Incorrect level assignment is
termed as liveliness failure. Note that in UPPAAL E and A
indicate ’eventually’ and ’always’, respectively, while <>
and [] are symbols for ’one case’ and ’all cases’ respectively.
The theorems/properties checked are:

• The sanity checks that all the nodes eventually broad-

cast a level message, where N is ID of a node. This
property is verified for all nodes in the network.

E <> NodeN .SEND LEV EL

• The sanity checks that a source node eventually senses
and broadcast data at least once, where S is ID of
source node:

E <> NodeS .SENSE DATA

• The sanity checks that the protocol eventually will en-
ter ’Data Forward Phase’. This also confirms that the
protocol will always finish the setup phase.

E <> Protocol.DATA FORWARD(true)

A[]Protocol.SETUP PHASE(false)

• The final sanity test verifies that the protocol will not
deadlock and will finish eventually i.e. it goes to FIN-
ISH state. It can also be treated as liveliness property.
Note that UPPAAL model, however, does deadlock,
when EG is in FINISH location, as only a limited num-
ber of messages are sent. If the guard to transmit a
certain number of messages is removed from the EG
model, then the system will never move to deadlock
state and will keep on sending messages for ever. How-
ever this has to be prevented, since our main aim is to
check certain properties and prevent the state space ex-
plosion problem. To address this problem, only a finite
number of traces are checked. A protocol only goes
to FINISH state if the source node has sent the desired
number of data messages (we set it to be 4) and no
node is in data forwarding mode. Either of the two
properties can perform this check:

E <> Protocol.FINISH

A[]!Protocol.F INISH

• The liveliness checks that all nodes get the correct level
when protocol is in operation phase:

Protocol.DATA FORWARD ⇒
(NodeLevel[N] == ExpectedLevel[N])

• The liveliness property verifies that a source node S
has at least one of its parent or neighbor attaining a
lower or equal level so that the source will send the
data to this node after the setup phase. The Arrive pro-
tocol allows to send data to only a parent (low level) or
neighbor (same level).

Protocol.DATA FORWARD ⇒
((NodeLevel[N1] <= NodeLevel[S])

OR(NodeLevel[N2] <= NodeLevel[S]))

284

Figure 3. Trace of UPPAAL showing that
Black hole is possible in Arrive

• The safety property checks that the base station will
eventually receive at least one data from the source.

E <> Sink.DataRec

• The safety property check that when the protocol com-
pletes the number of received data messages at the sink
or base station are more than N, where N≤TotalSent.

Protocol.F INISH ⇒ (TotalRec > N)

This final theorem/property is most important and our
model confirms that N is reduced to 0 even in the presence
of 2 malicious nodes located 2 hops away from the source
node. Next, we have applied different attack models to the
Arrive protocol to confirm whether the properties/theorems
were still valid in the presence of these attacks. In the case
of any safety and liveliness property failing, Arrive proto-
col is considered susceptible to that particular attack and
UPPAAL automatically generates a trace. This trace shows
how an attacker has succeeded. In the next sections we will
discuss these attacks and the extent of their successes or
failures.

4.3. Black hole Attack with a single path

In a black hole attack, a malicious node joins the net-
work and then either discards all the messages it receives or
performs selective forwarding. It was confirmed that Arrive
protocol has successfully defeated a single black hole at-
tack. However, a problem arises when there are 2 black hole
attacks within any node’s range especially when there is no
legitimate parent/neighbour of that node. Figure 3 shows
a trace generated by UPPAAL in which the safety property
fails in the presence of 2 black hole nodes. As the level of

propagation was completed without any problem so it has
not been included in the trace. The message format used
in the trace is (Type,ID,Source,EventNo) where Type is the
message type(Level/Data); ID is the destination ID; Source
is the source ID and EventNo is the unique Event ID for
each event.

Note that the 2 black holes are not even colluded (within
one another’s range). The source node keeps on sending
data to node Nc as it always eavesdrops if the node Nc has
forwarded the data. This also improves the ranking of Nc.
The node Nd will not forward the data passively as node Nd
has not eavesdropped data sent to any of its neighbors (Nc
and Nd are not the neighbors). The node Nc first attempts
to forward data to node A1. A1 does not forward data, so
the ranking is lowered and at the next time Nc selects A2
for data forwarding. Unfortunately A2 is also an attacker
node so the data is lost again. Nc lowers the ranking of A2
and tries to transmit data to A1 and this process continues.
Note that even the presence of another node having a lower
level than node Nc will not help here. The reason being
that the nodes only forward data to their neighbors (same
level nodes) or parents (lower level nodes). We later con-
firmed this by employing 4x4 and 5x5 grids instead of 3x3
grid. Thus a flaw in Arrive protocol was detected through
the use of our framework. Even if nodes A1 and A2 are
dead, the same error is still possible. Note that a route does
exist between S and B via S-Nd-Ne-Nb-B. Any other node’s
message forwarded by node S (higher level nodes in a larger
network) will be lost as well because this will also follow
the same path. Even if node S sends half the packets through
node Nd, the other half that goes through Nc will be lost and
Arrive cannot detect it.

4.4. Black hole Attack with multiple paths

In section 4.3 we discussed that if Arrive uses 2 or more
disjointed paths to transmit the same data, the data may
eventually reach the base station. To confirm this finding
and to model the disjoint multipath technique used in Ar-
rive, a larger network of 16 nodes was considered. The
Node model presented earlier was modified so that the
source nodes can unicast data to multiple paths.

The safety and liveliness properties are violated again
as shown by the trace of Figure 4. The message format
(Type,ID,Source,EventNo) in the trace is amended this time
and the Sender Node’s ID is added at the beginning of the
message. This has been done to make the trace more read-
able. Moreover, to simplify the process the level beacons
are omitted from the trace and only those messages are
placed in the trace which are directly received.

In Arrive protocol the node only stops forwarding to
a neighbour/parent if the reputation or ranking is below a
threshold value which was set to 1. Therefore, a node will

285

Figure 4. Trace of UPPAAL showing that
Black hole is possible in Arrive even using
multiple paths

not select a neighbour/parent even if it drops a single packet.
Still the safety property fails for N up to 4. The trace con-
firms the path taken by the nodes. Although the data is sent
to 2 disjoint nodes N11 and N13, but both the data pack-
ets are eventually lost. It is worth noting that this is a low
density network with only 2 disjoint paths possible from the
source.

An interesting point to note here is that the nodes use
reputation in the model after a single message loss. How-
ever, this is not actually the case in a real scenario. So one
may ask the question of how many packets may be lost be-
fore the black hole nodes are isolated. Moreover, this is a
small network and for larger networks, more routes can oc-
cur through the black holes resulting in further loss of data.
As explained in Section 4.3 passive forwarding is not effi-
cient here.

4.5. INA

In Invisible Node Attack (INA), the attacker remains
invisible and retransmits the routing information without
adding itself and the data packets are later dropped. It was
confirmed that INA is unsuccessful in Arrive. Although the
nodes gain incorrect level (liveliness property fails), but, the
safety properties do hold thus confirming that the data is re-
ceived by the sink. This is because INA would enable a
node to get a level lower than the actual one. The only side
effect is that parents may become neighbors, while neigh-
bors are removed. Moreover, INA creates virtual parents.
So when a node forwards data to its virtual parent (2 levels
away) the nodes which are one level away from the sender

Figure 5. Trace of UPPAAL showing that
Wormhole is possible in Arrive

node can perform passive forwarding so that the data is
eventually sent. The ranking of the virtual parent is dropped
resulting in INA not forwarding data. The developers of Ar-
rive were unaware of this fact though they never claimed it.
But our model checker has proven that passive forwarding
fails in INA.

4.6. Wormhole Attack

In a wormhole attack, an attacker records the packets (or
bits) at one location in the network, tunnels these to another
location and then retransmits into the network. Therefore, a
wormhole attack not only disturbs the correct routing but is
also the precursor to many other attacks such as black hole,
sink hole, etc. Figure5 shows a trace generated by UPPAAL
in which both the safety and liveliness properties fail in the
presence of a wormhole attack. The message format in the
trace is again reduced to (Type,ID,Source,EventNo) where
Type is message type (Level/Data); ID is the destination ID;
Source is the Source ID and EventNo is the unique Event
ID for each event. Here a wormhole tunnel exists between
node B and S. Thus node S gets a level of 1 and the nodes
which should be its parents (Ne and Nf) get a level 2 which
is higher than that of node S. The messages msg01 to msg09
explain the setup phase and how the nodes acquire the lev-
els. When the source node S sends data, it has only one par-
ent node B which is not within its radio range. Therefore,
whenever a node transmits data to B the node ranking of B
is lowered. But as there is no other node (neighbour/parent)
that can be chosen to be the next hop, the data is always sent
to B and thus lost. Moreover, nodes Ne and Nf cannot act
as passive forwarders. The reason is that the necessary con-
dition for a passive forwarding (i.e. B is within their range)
is nonexistent. This clearly shows that the wormhole attack

286

was successful in Arrive protocol.

4.7. Other DoS Attacks

Our framework has confirmed that Arrive protocol is sus-
ceptible to many other DoS attacks such as hello flood, rush-
ing, sink hole, spoofing attacks etc. The hello flood attack
involves the use of a high power transmitter (or powerful
laptop) by an attacker to broadcast the routing or other in-
formation with the purpose to convince every node within
its radio range that the attacker is a genuine neighbor node.
Our formal framework confirmed that if the hello flood at-
tacker’s transmissions reach all the network nodes (unidi-
rectional), then the hello flood eventually fails in Arrive
protocol. Since all nodes have the same level (liveliness
property fails) the passive forwarding will enable the data
to eventually reach the sink. However, the probability of
passive forwarding should be low so that hello flood causes
considerable message loss before being detected as a ma-
licious parent. Our formal model confirms that, if all the
nodes are not within the attacker’s radio range, the hello
flood is successful in Arrive protocol. In many cases, a
subset or only a few nodes will receive these unidirectional
transmissions and our formal framework has also confirmed
that the nodes get incorrect level (liveliness property fails)
and data will not reach the sink (safety property fails).

A spoofing attack refers to altering or replaying the rout-
ing information. This can lead to the creation of inaccurate
or unstable routes. A sink hole is a potent form of spoof-
ing in which the attacker makes itself particularly attractive
to all nodes within its radio range, usually by advertising
low cost routes to all destinations. Our framework has con-
firmed that both these attacks are successful in Arrive pro-
tocol especially when the attacker node behaves as if it is
a base station by sending a level of 0. Even if the attacker
is within the radio range of other nodes, passive forward-
ing will not be adopted by any node, assuming that this
node is the base station. The proposed formal framework
has also confirmed that spoofing attacks are successful since
any node can spoof level of 0 and thus can disrupt the whole
network.

In rushing attack, an attacker transmits incorrect mes-
sages, prior to the legitimate ones, with the aim that the
nodes reject the legitimate messages and accept the incor-
rect/false messages. The successful wormhole, sinkhole
and hello flood attacks in Arrive protocol have automati-
cally made possible rushing attacks. The nodes accept in-
correct messages in level propagation and reject the correct
level beacons. Moreover, liveliness property violation will
always mean that Rushing attack is successful.

5. Conclusions

Although Arrive protocol provides robustness against
malicious and failed nodes by maintaining neighbor rep-
utation, the developers of the protocol themselves suspect
that there will be abundance of additional messages in us-
ing passive participation due to hidden terminal problems.
Also, unidirectional links are the other cause of concern for
them. Finally, Arrive protocol also assigns a level to each
node based on hop distance from the base station. However,
Arrive developers were aware that malicious nodes may lie
about their level or replicate these levels to draw more traf-
fic (spoofing). In addition, attackers may forward packets
into oblivion to increase their reputation (sinkhole).

Despite these problems, Arrive is still vulnerable to
black hole attacks when a node in the network has only
black hole parents and neighbors. A black hole is also not
detected by off-spring nodes which have forwarded data to
that node. This leads to all the down stream traffic being
lost. This problem has been detected by our formal frame-
work which has also confirmed that the wormhole will as-
sign incorrect levels to nodes enabling the data to be sent to
oblivion. Because the wormhole is usually composed of a
multi-hops tunnel, the passive forwarding also will not be
possible since a tunnelled node will not be within the ra-
dio range of the nodes. In addition, a hello flood attack is
also possible in Arrive. However, the problem of INA has
been addressed using passive forwarding as conformed by
our formal model. Finally, Arrive protocol is susceptible to
sinkhole and spoofing attacks as indicated by the develop-
ers of Arrive themselves and were also confirmed by our
formal framework. Hence, we have shown that by using
formal modeling hidden bugs in any routing protocol can
be detected automatically. Our future work involves test-
ing more secure and robust routing protocols using formal
modeling.

References

[1] T. Andel and A.Yasinsac. Automated evaluation of secure
route discovery in MANET protocols. In K. Havelund,
R. Majumdar, and J. Palsberg, editors, Proceedings of 15th
International SPIN Workshop on Model Checking Software
(SPIN 2008),Los Angeles, CA, USA, volume 5156 of Lecture
Notes in Computer Science, pages 26–41. Springer, August
10-12, 2008.

[2] G. Behrmann, A. David, K. Larsen, J. Håkansson, P. Pet-
tersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In Proceed-
ings of the 3rd International Conference on the Quantitative
Evaluation of SysTems (QEST) 2006, IEEE Computer Soci-
ety, pages 125–126, 2006.

[3] D. Braginsky and D. Estrin. Rumor routing algorithm for
sensor networks. In Proceedings of the First Workshop on
Sensor Networks and Applications (WSNA), Atlanta, GA,
pages 22–31, October 2002.

287

[4] Y. Hanna, H. Rajan, and W. Zhang. Slede: a domain-specific
verification framework for sensor network security protocol
implementations. In Proceedings of the first ACM confer-
ence on Wireless network security (WISEC 2008), Alexan-
dria, VA, USA, pages 109–118, 2008.

[5] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor
networks. In Proceedings of the 5th Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Network-
ing (MobiCom’99) , Seattle, Washington, USA, pages 174–
185, August 1999.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In Mobile Computing and Networking,
pages 56–67, 2000.

[7] C. Karlof, Y. Li, and J. Polastre. Arrive: Algorithm for ro-
bust routing in volatile environments. In Technical Report
UCBCSD-02-1233, Computer Science Department, Univer-
sity of California at Berkeley, March 2003.

[8] C. Karlof and D. Wagner. Secure routing in wireless sen-
sor networks: Attacks and countermeasures. In Elsevier’s
AdHoc Networks Journal, Special Issue on Sensor Net-
work Applications and Protocols, volume 1, pages 293–315,
September 2003.

[9] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
SPINS: Security Protocols for Sensor Networks. In ACM
Mobile Computing and Networking, volume 8, pages 521–
534, Sep 2002.

[10] K. Saghar, W. Henderson, and D. Kendel. Formal modelling
and analysis of routing protocol security in wireless sensor
networks. In PGNET 2009,Liverpool, UK, pages 179–184,
22-23 June 2009.

[11] L. Tobarra, D. Cazorla, and F. Cuartero. Formal Analysis
of Sensor Network Encryption Protocol (SNEP). In IEEE
Internatonal Conference on Mobile Adhoc and Sensor Sys-
tems (MASS 2007), Piscataway, NJ, USA, pages 767–772,
Pisa (Italy), October 2007.

[12] L. Tobarra, D. Cazorla, F. Cuartero, G. Diaz, and E. Cam-
bronero. Model Checking Wireless Sensor Network Se-
curity Protocols: TinySec + LEAP. In Proc. of the First
IFIP International Conference on Wireless Sensor and Ac-
tor Networks (WSAN’07), pages 95–106, Albacete (Spain),
September, 2007. IFIP Main Series, Springer.

[13] A. Wood and J. Stankovic. Denial of service in sensor net-
works. In IEEE Computer, volume 35, pages 54–62, Sep
2002.

[14] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security
mechanisms for large-scale distributed sensor networks. In
ACM Conference on Computer and Communications Secu-
rity (CCS’03), pages 62–72, October 2003.

288

