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Abstract. Reachability analysis and model checking of timed automata
are now well-established techniques in the analysis of real-time control
systems. The major limiting factor in their use, from a technical point
of view, remains the state explosion problem. Symbolic representation of
the state space often allows for the analysis of much larger systems than
the point-wise representation which is common in enumerative analysis.
In particular, the use of binary decision diagrams (BDD’s) has been
successful, mainly in the analysis of hardware systems where the need
for a compact representation of boolean functions is prevalent. However,
the modelling of software systems commonly employs a richer set of data
types and this fact motivates the investigation of different encodings of
sets of states than by their characteristic functions. This paper considers
the use of minimized deterministic finite state automata (MA’s) for the
storage of the set of visited states in the reachability analysis of models
of broadcasting systems expressed using a timed process algebra.

1 Introduction

This paper outlines an approach to the implementation of reachability analysis
of system models expressed using bBCANDLE [16], an algebra of asynchronous
broadcasting systems, which we have developed to facilitate the modelling of dis-
tributed control systems which are implemented using Controller Area Network
(CAN) [15]. Although we are interested in a rather specialized class of systems,
the results in this paper are significant in the wider context of the reachability
analysis of timed automata [2].

The rest of the paper is organised as follows: Sect. 2 briefly introduces bCAN-
DLE; Sect. 3 outlines an approach to timed reachability analysis of bCANDLE
models and introduces the main data structures needed to support the analysis;
MA’s are introduced in section 4 and their application in reachability analysis is
considered; our implementation and experimental results are described in Sect. 5;
related work is reviewed in Sect. 6; Sect. 7 concludes and proposes further work.



2 bCANDLE

bCANDLE is a timed process algebra allowing the expression of system models
consisting of a set of asynchronous processes, each having its own local data state
and communicating by sending and receiving messages on one or more broadcast
channels which implement the CAN protocol.

A process can engage in three different kinds of basic action:

1. sending a message on a channel;

. receiving a message from a channel, and

3. performing an operation in a bounded amount of time, possibly transforming
its local data state on completion.

[\)

More complex process behaviour can be defined using sequential composition,
guards on data states, non-deterministic choice and interrupt. A bCANDLE
system consists of the asynchronous parallel composition of a fixed number of
processes together with a network of CAN channels.

The semantics of a bBCANDLE system is given by associating with it a timed
transition system. A timed transition system S = (X,0%,L£, —) is a tuple in
which X is the set of states, 07 € X is the initial state, £ = AUR>? is the set of
labels consisting of action labels A and time labels R>® and — C ¥ x L x ¥
is the transition relation which is required to be deterministic and continuous
with respect to the passage of time. A detailed semantics of bBCANDLE is given
in [16].

For the purposes of verifying a hCANDLE system, we work with a timed
safety automaton [13] having a bisimilar transition system. We introduce timed
safety automata briefly below.

2.1 Timed Safety Automata

Let H be a set {ho, h1,- - , by} of real-valued variables, called clocks, where each
h; € H ranges over the non-negative reals R*. A clock valuation is a function
v : H — R which assigns a value in R to each clock in H. We assume that hg
is given the value 0 by every clock valuation. We denote by v[H' := 0], the clock
valuation v’ such that v'(h) =0 for all h € H" and v'(h) = v(h) otherwise. For
t € R*, we denote by v + ¢ the clock valuation v’ such that v'(h) = v(h) + ¢ for
all clocks in H. 0 is the clock valuation which assigns 0 to every clock. A bound
over H is a constraint of the form h; — h;#c where i,j € {0,... ,n}, # € {<,<}
and ¢ € ZUoo. A clock constraint is a conjunction of bounds; it defines a convex
subset of R™ known as a zone. We denote the set of clock constraints over the
clocks H by ¢(H).

A timed safety automaton (TSA) is a tuple A = (Q, ¢©, A, E, H, T) where: Q is
a finite set of control locations, ¢* is the initial control location, A is a finite set of
event names, E is a finite set of edges where an edge is of the form (g, ¢, a, X, ¢')
where ¢, ¢’ € Q are control locations; ¢ € #(H) is a clock constraint, ¢ € A is an
event name and X C H is a set of clocks to be reset; H is a finite set of clocks,



and T: Q — &(H) is a function which associates a time progress condition (or
invariant) with each control location.

The semantics of the TSA A = (Q, ¢*, A, E, H,I) is given by the timed tran-
sition system 7 [A] = (¥,0%,L,—) where X is the set of pairs (g,v) such
that ¢ € Q is a location of A and v is a clock valuation for H which satisfies the
invariant I(q); o = (¢”,0) is the initial state; £ = A UR>? is the set of labels;
— C ¥ x L x X is the transition relation containing transitions as follows:

— Time transitions: A state can change due to the elapse of time. There is a
transition (q,v)—t—>(q,v + t) if for all ¢’ < t, v + ¢’ satisfies the invariant
I(q).

— Ewvent transitions: A state can change by moving location. For each state
(g,v) € X, if there is an edge (¢, ¢, a, X, ¢') € E such that v satisfies ¢, then
there is a transition (g, v)—=(¢',v[X :=0]).

2.2 From bCANDLE to Timed Safety Automata

The translation of the timed algebra ATP [19] into TSA is shown in [24]. We
have adapted this approach in order to associate a TSA with a bCANDLE
system. The main addition is to handle the additional context i.e. the network
and data environment. In this approach the control part of the system model is
first translated into a net-like structure. In any state of the system, the currently
active transitions are given by a marking of the net. Each transition has a number
of attributes associated with it. The attributes of a transition might include a
context condition, a label, a clock and upper and lower bounds for the clock
value. If the context and clock conditions are satisfied, a marking M and a
context C' may be transformed by an active transition to a new marking M' and
a new context C’, possibly resetting some clocks along the way. Lack of space
prevents us from giving the details here, however, from this brief description it
can be seen that for a TSA derived from a bBCANDLE system model, a location
comprises information about: 1) the current marking, given as a set of integers

{p1,p2,...,pc} for some variable number ¢ where each p; identifies an active
transition; 2) the values of all data variables, given as a sequence of values
(vi,v2,...,vq) for some fixed number d of variables; and 3) the state of the

network channels, given as a sequence of pairs (s, m) where s gives the status of
the channel, free, transmitting, etc. and m is a variable-length, priority ordered
sequence of messages awaiting transmission on the channel.

A state in a TSA is given by a location and a clock valuation. However, we
will see in Sect. 3 that a practical implementation of timed reachability analysis
requires the use of symbolic states where each symbolic state represents a location
and a set of clock valuations.

A bCANDLE state vector, then, consists of a location as described above
and a zone defining a set of clock valuation(s), see Fig. 1.
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Fig. 1. Structure of a bCANDLE state vector

3 Reachability Analysis

Of the several approaches to automated analysis of real-time systems, reach-
ability analysis (RA) is one of the more easily implemented and informative.
The basic reachability problem is to determine the set of system states which
are encountered on any execution starting from some given state. RA allows
the checking of safety properties of a system by answering the question: is it
possible to reach an incorrect or unsafe state from an initial state. Other veri-
fication problems can be solved by building upon the solution of the basic RA
problem [1]. The algorithm of Fig. 2 shows how to compute the set of states
reachable from a given initial state.!

VISITED := {(¢*,0)}
WAITING := {(¢*,0)}
while WAITING # () do
remove some (¢,Z) from WAITING
suce = (0., 7.) | (0,72)—s(40,72) A 7 # 0}
foreach (gs,Zs) € succ do
if (¢s,Z.) ¢ VISITED
add (gs,Zs) to VISITED
add (gs,Zs) to WAITING
fi
od
od

Fig. 2. An algorithm for reachable states

The termination of the algorithm depends upon the construction of a finite
quotient of the infinite transition system given by the TSA semantics. Important
aspects of such a construction are 1) the use of symbolic states (q,Z) where ¢
is a location as usual and Z is a zone which represents a set of clock valuations,
and 2) the definition of a transition relation —g between symbolic states. Es-
sentially, for a symbolic state S = (¢,Z) and an edge e = (q,Z¢,a,X,q'), we

! Both KRONOS and UPPAAL implement a more efficient algorithm using inclusion
abstraction in which the test (¢s,Z;) ¢ VISITED is replaced by the more efficient
test V(qs,Z') € VISITED o Z, € Z'. We will implement this improvement soon.



say S—g post_(S) where

post,.(¢,Z) = (¢",1(¢') N M(ZN7Z:)[X :=0))

Here "7 is the time progress operator which relaxes all upper bounds and
Z[X := 0] is the clock reset operator. See [8] for further details.

The problem considered in the rest of the paper is how to arrange for the
compact storage of the set VISITED of visited state vectors, where a major
difficulty has been to combine a good encoding of the locations (the discrete
part of the system) with a good encoding for the clock valuations (the continuous
part). This problem is addressed in the following section.

4 A Minimized Automaton Representation of Reachable
States

A state vector can be regarded as being encoded as a string of bytes. This opens
up the possibility of representing the set of visited states by a deterministic finite
automaton (DFA) which recognizes it. Such an approach has been implemented
in the model checker SPIN [14] where it has been shown to achieve even better
compression for many systems than that obtained by the use of BDD’s [22]. The
approach has not been previously applied in the analysis of timed systems.

Definition 1. A k-layer DFA is A = (Q,6,%) where @ = | J{Q; | 0 < i <k}
is the set of states, QQ; C @ is the non-empty set of states at the ith layer
and Q; N Q; = 0 for i # j. Qo is a singleton containing the initial state and
Qr = {T,F}. X is the alphabet and § : @~ x X — Q is the transition function
where @~ = Q \ Qr and for all states ¢ € Q~ and symbols 0 € X, if ¢ € Q;
then 0(q,0) € Qit1. T is the accepting final state and F is the rejecting final
state.

We use o[i,j] to denote the string o;,0:41,...,0;. A string o[i,j — 1] € X7~
generates a run ¢;¢yi,--- ,q; where 6(¢m,0m) = @my1. We define La(g;) =
{o]i,k — 1] | o[i,k — 1] generates the run ¢[i, k] where ¢, = T}. We define
L(A) = La(q) where go € Qo. A DFA is minimized provided L(¢;) = L(g;)
iff ¢ = g;.

Ezample 1. The MA of Fig. 3 is A = ({Q:i}}_,,6, %) where Qo = {0}, Q1 =

{1,2,3}, @2 = {4,5}, Q3 = {6,7} and Q4 = {T,F}. ¥ = {a, b, c}. A represents
the set S C X* of strings where

S = {aaaa, aaba, aaca, abaa, abba, abca, acaa, acba, acca, baab, baba, baca, bbab,

bbba, bbca, beaa, beba, beca, caab, caba, caca, cbaa, cbba, cbea, ccab, ceba, cccat

The use of a MA for the state store in a reachability analysis requires the
partitioning of each state vector (Fig. 1). Here a state vector is partitioned as a
sequence of bytes and each byte is allocated to a distinct layer in the automaton.
With this approach the ordering of components within the state vector can have



Fig. 3. A minimized automaton

a significant impact upon the space reductions achieved. The key observation
concerning the suitability of MA’s in the analysis of timed systems is that the
clock constraint component Z of a symbolic state (¢, Z) is usually represented
by a difference bound matrix (DBM) [10] which is also encoded naturally as a
byte sequence and so can be easily incorporated into the MA state store. This
contrasts significantly with approaches based upon a BDD representation of the
state store where this integration is much more problematic.

5 Implementation and Experimental Results

5.1 Implementation

We have implemented a prototype ‘compiler’ for hCANDLE. The compiler is
written in ML and generates C code to perform a given task on a system model.
The user can choose to generate the timed graph for the model (in KRONOS
.tg format), or to perform reachability analysis of the simulation graph on-
the-fly, without first generating the timed graph, or to explore the simulation
graph interactively. In order to experiment with a variety of state space storage
modes, we generate C code for the following modes (the mode is chosen as a
compile-time option) :

H Each state vector is encoded as a fixed length byte array. In each state, storage
is allocated for the maximum number of clocks required system-wide, even



though there may be many states in which fewer clocks are active [9]. The
set of visited states is stored in a single hash table.

M As for H, except that the set of visited states is stored as a MA.

HYV Each state vector is encoded as a fixed length byte array which includes a
pointer to a variable dimension matrix [21] giving the zone associated with
the state. State vectors are stored in one hash table, variable dimension
matrices in another. This means that for each state, only sufficient storage is
allocated for the number of clocks active in it, and that only one copy of each
distinct zone is stored for the whole system. This corresponds closely to the
storage mode adopted by the most recent implementations of KRONOS [21].

MYV As for HV, except that the hash table storing the state vectors is replaced
by a MA.

5.2 Experiments

We have tested our implementation on some example system models: Boilerl
and Boiler2 model part of a boiler control system; Disbmut models a CAN
implementation of a standard algorithm for distributed mutual exclusion [20],
the model included here is for a single coordinator and three competing pro-
cesses. Table 1 gives information regarding the scale of the examples: number
of processes, variables, CAN channels, message types and clocks required by
each system, and the number of distinct zones and symbolic states identified in
generating the whole of the reachable state space in the simulation graph.

System |Procs|Vars|Chans|Mtypes|Clocks|Zones|States
Boilerl 2 2 1 1 5| 29073|143802
Boiler2 2 3 1 1 3| 581|825643
Disbmut 4 10 1 6 6| 71010{194491

Table 1. Test systems

Performance measurements for each system and each state space storage
mode are given in Tab. 2. We show the time taken and the total memory used in
generating the reachable state space. We take mode H as the basis of compar-
ison and show memory compression and time overheads as percentages of the
requirements of mode H. The measurements were taken on a 233MHz Pentium
IT having 64Mb RAM (58Mb available) and 128Mb swap, running RedHat Linux
5.0.

In common with other symbolic approaches such as BDD’s [7] and GE-
sets [12], MA’s are sensitive to variable ordering. We have begun to investigate
this phenomenon, in our implementation, by permuting the order of the major
components of a state vector: marking M, context C (network and data en-
vironment) and zone Z. We have generated the reachable state space for each
permutation and each of the modes M and MV.



System |Mode|Mem (Mb)|Comp %|Time (s)|Over %
Boilerl H 14.57 100 21 100
M 8.40 58 213 1014
HV 6.91 47 20 95
MV 3.12 21 32 152
Boiler2 H 40.88 100 59 100
M 3.69 9 145 246
HV 18.79 46 60 102
MV 4.22 10 105 178
Disbmut| H 32.79 100 74 100
M 12.24 37 315 426
HV 18.07 55 74 100
MV 12.52 38 94 127

In addition, for mode M, we have investigated the influence of the placement
of cells within the encoding of the matrix representing the zone: order OO is the
standard row-major encoding of a matrix; O1 removes clock names from the
diagonal, stores them before all other cells and then follows row-major ordering
of the remaining cells; finally, O2 also removes clock names from the diagonal, as
for O1, and additionally, stores contiguously both the lower and upper bounds
for each clock, giving a representation somewhat similar to a CDD [5] in which

Table 2. Comparison of storage modes

all constraints are stored.

Tab. 3 shows the state space usage of the orderings which show the best, and
the worst, performance for each system and each MA mode. The nodes (resp.
edges) column shows the total number of nodes (resp. edges) used in the final

MA.

System|Mode| Order | Nodes| Edges|Mem (Mb)
Boilerl M |CMZ, O1] 158861| 479927 8.40
M |CMZ, O2| 266451| 757426 12.90
MV MZC 52501 59940 3.12
MV CZM 5693| 91865 4.33
Boiler2 M |CZM, O0| 50987| 206788 3.69
M |ZCM, O0| 602525{1577930 26.62
MV CMZ 44300| 191575 4.22
MV ZCM 594544(1560000 27.37
Disbmut| M |CMZ, O1| 226001| 594846 12.24
M |MZC, 00[1454128|3660000 63.74
MV CMZ 99838| 433329 12.52
MV ZCM 223085| 674899 18.15

Table 3. Impact of variable ordering on minimized automaton modes




5.3 Discussion of experimental results

Reference to Tab. 2 shows that the most economical use of space, for all examples,
involves the use of a MA. However, including the zone encoding in the MA
(mode M) gives only marginally better use of space than that given by the use
of variable dimension matrices (mode MV), and this only in two cases; in the
other case, mode MYV is better. This suggests that the use of a MA does not
offer a particularly efficient representation of a union of zones but is effective
in encoding the discrete variables. It remains to be seen if this observation is
repeated as we tackle larger systems.

As expected, we pay a time performance penalty for the use of MA; however
the better the compression achieved, the less the time penalty. Achieving good
compression requires the use of a good variable ordering. From Tab. 3, we observe
that in 4 of 6 cases the best ordering for the state vector components is context,
marking, zone (CMZ), and in 2 of 3 cases the best ordering for cell elements is
O1. Further experiments are needed to see if this is sustained. We also notice
that use of a bad variable ordering can be disastrous, as witnessed by the worst
case for Disbmut, mode M.

6 Related work

Representation of timing constraints by DBMs was proposed by Dill [10] and
has been preferred in the most efficient verification tools for timed systems, such
as KRONOS [13] and UPPAAL [18].

Wong-Toi and Dill [23] and Balarin [4] have each shown techniques for encod-
ing the transition relation of timed systems using BDD’s, approximating unions
of zones using convex hulls. Bozga et. al. [6] offer a canonical representation of
discretized sets of clock configurations using NDDs? [3], which are a BDD-based
encoding amenable to combination with a symbolic representation of the discrete
part of the system.

Larsen et. al. [17] propose a compact encoding for DBMs which provides a
minimal and canonical representation of clock constraints and allows for efficient
inclusion checking between constraint systems. They do not consider how this
representation may be combined with a symbolic representation of the rest of
the system.

Behrmann et. al. [5] have recently proposed clock difference diagrams as a
data structure for the compact representation of unions of zones. On a variety
of case studies, they report space savings of between 46%-99% over their earlier
DBM implementation.

7 Conclusions and further work

In this paper, we have proposed the use of MA’s for the representation of the
state space in the reachability analysis of timed systems. The advantage of this

2 Numerical Decision Diagrams



approach is that a symbolic representation of the discrete state variables can
be combined very simply with a DBM representation of zones. Preliminary ex-
perimental results suggest that this leads to significant space reductions which
are achieved mainly because of the compact encoding of the discrete variables.
The impact of MA’s on the space requirements of unions of zones seems less
promising. For this reason, we expect to see the greatest benefits in the anal-
ysis of asynchronous, data-bearing systems where the value of this approach
has already been demonstrated in untimed settings [11,12]; fortunately for us,
CAN-based systems mainly fall within this class.

For the future, it would be interesting to investigate the combination of MA’s
with CDD’s. We expect also that an MA option would be a useful addition to
KRONOS and UPPAAL now that both tools handle system descriptions with
discrete variables.
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