USING SHARING TREES IN THE AUTOMATED ANALYSIS OF REAL-TIME SYSTEMS

WITH DATA.

David Kendall William Henderson Adrian Robson

Department of Computing and Mathematics, University of Northumbria at Newcastle, Ellison Building,

Newcastle upon Tyne, NE1 8ST

Abstract

Reachability analysis and model checking of timed
automata are now well-established techniques in the
analysis of real-time control systems. The major lim-
iting factor in their use, from a technical point of
view, remains the state explosion problem. Symbolic
representation of the state space often allows for the
analysis of much larger systems than the point-wise
representation which is common in enumerative anal-
ysis. In particular, the use of rooted, ordered binary
decision diagrams (ROBDDs) has been successful,
mainly in the analysis of hardware systems where the
need for a compact representation of boolean func-
tions is prevalent. However in software systems, it
is often desirable to represent data types which are
more complicated than booleans. The use of shar-
ing trees [16], which eliminates the requirement to
find a boolean encoding of all data types, may offer
a more attractive alternative to ROBDDs in these
circumstances. This paper considers the use of shar-
ing trees in the context of automata derived from a
timed algebra of asynchronous broadcasting systems.
It suggests that an encoding of timing constraints
may be more easily incorporated into a sharing tree
representation of the state space than into one based
on ROBDDs.

1 Introduction

This paper outlines an approach to the implementa-
tion of reachability analysis of timed automata de-
rived from system models described using a timed
process algebra. It suggests that the sharing tree
data structure provides a compact encoding of both
the discrete and continuous components of a state
vector. The rest of the paper is organised as follows:
section 2 briefly introduces CANDLE [10], a lan-
guage for modelling broadcasting real-time systems,
which includes many of the features which one wishes
to handle in automated analysis; section 3 briefly
outlines an approach to timed reachability analysis
of CANDLE models and introduces the main data
structures needed to support the analysis; sharing
trees are introduced in section 4 and their application
in reachability analysis is considered; related work is
reviewed in section 5; section 6 concludes and pro-

poses further work.

2 C(CANDLE

CANDLE is an expressive real-time language with a
comparatively simple operational semantics. It has
been developed for the modelling and analysis of real-
time systems which communicate using Controller
Area Network (CAN) [9]. At the heart of CANDLE
is a core language, BCANDLE which is a timed pro-
cess algebra allowing the expression of system mod-
els consisting of a set of asynchronous processes, each
having its own local data state and communicating
by sending and receiving messages on one or more
broadcast channels. A process can engage in three
different kinds of basic action: 1) sending a message
on a channel; 2) receiving a message from a channel
and 3) performing an operation in a bounded amount
of time, possibly transforming its local data state on
completion. More complex process behaviour can be
defined using sequential composition, guards on data
states, non-deterministic choice and interrupt. A
CANDLE system consists of the asynchronous par-
allel composition of a fixed number of processes.

The semantics of a CANDLE system is given by
associating with it a timed transition system. A
timed transition system S = (¥,0%,L,—) is a tu-
ple in which ¥ is the set of states, ¢ € ¥ is the
initial state, £L = A UR>? is the set of labels con-
sisting of action labels A and time labels R>? and
— C ¥ x £ x ¥ is the transition relation which
is required to be deterministic and continuous with
respect to the passage of time. The semantics are
given in detail in [10]. For the purposes of verify-
ing a CANDLE system, we work with a timed safety
automaton [8] having a bisimilar transition system.
We introduce timed safety automata briefly below.

Let H be a set {hg, b1, - - , hy, } of real-valued vari-
ables, called clocks, where each h; € H ranges over
the non-negative reals RY. A clock valuation is a
function v : H — R* which assigns a value in Rt to
each clock in H. We assume that hg is given the value
0 by every clock valuation. We denote by v[H' := 0],
the clock valuation v' such that v'(h) = 0 for all
h € H' and v'(h) = v(h) otherwise. For ¢ € RT,
we denote by v + t the clock valuation v’ such that

v/(h) = v(h) 4+ t for all clocks in H. 0 is the clock
valuation which assigns 0 to every clock. A bound
over H is a constraint of the form h; — h;#c where
i,j € {0,...,n}, # € {«,<}and ¢ € ZUoo. A
clock constraint is a conjunction of bounds. We de-
note the set of clock constraints over the clocks H by
o(H).

A timed safety automaton (TSA) is a tuple A =
(Q, ¢*,A,E,H,I) where: Q is a finite set of control
locations, ¢ is the initial control location, A is a
finite set of event names, E is a finite set of edges
where an edge is of the form (q,¢,a, X, q") where
q,q € Q are control locations; ¢ € ®(H) is a clock
constraint, ¢ € A is an event name and X C H is a
set, of clocks to be reset; H is a finite set of clocks, and
I:Q — ®(H) is a function which associates a time
progress condition (or invariant) with each control
location.

The semantics of the TSA A = (Q, ¢%, A, E,H,1)
is given by the timed transition system T [A] =
(2,07, L, —) where ¥ is the set of pairs (¢, v) such
that ¢ € Q is a location of A and v is a clock
valuation for H which satisfies the invariant I(q);
or = (¢%,0) is the initial state; £L = A U R>? is
the set of labels; — C X x £ x ¥ is the transition
relation containing transitions as follows:

e Time transitions: A state can change due
to the elapse of time. There is a transition
(q,v)—t>(q,v +¢) if for all ¢/ < ¢, v+ ¢’ satis-
fies the invariant I(g).

e FEuvent transitions: A state can change by mov-
ing location. For each state (q,v) € X,
if there is an edge (q,¢,a,X,q¢') € E such
that v satisfies ¢, then there is a transition
(g,v) - (¢', VX := 0]).

For a TSA derived from a CANDLE system
model, a location comprises information about:
1) the currently active process terms, given as a set
of integers {p1,p2,...,p.} for some variable num-
ber ¢ where each p; defines a marked place in a net-
like representation of the process term for the model;
2) the values of all data variables, given as a sequence
of values (v, va, ... ,v4) for some fixed number d of
variables; and 3) the state of the network channels,
given as a sequence of pairs (s, m) where s gives the
status of the channel, free, transmitting, etc. and
m is a variable-length, priority ordered sequence of
messages awaiting transmission on the channel. A
CANDLE state vector, then, consists of a location
as described above and a (set of) clock valuation(s),
see figure 1.

3 Reachability Analysis

Of the several approaches to automated analysis of
real-time systems, reachability analysis (RA) is one
of the more easily implemented and informative. The
basic reachability problem is to determine the set of
system states which are encountered on any execu-
tion starting from some given state. RA allows the
checking of safety properties of a system by answer-
ing the question: is it possible to reach an incorrect
or unsafe state from an initial state. Other verifi-
cation problems can be solved by building upon the
solution of the basic RA problem [1]. Algorithm 1
outlines a basic algorithm for computing the set of
states reachable from a given initial state.

Algorithm 1 (Reachable States)

VISITED := {(¢%,0)}
WAITING = {(¢*,0)}
while WAITING # () do
remove some (¢,D) from WAITING

suce == {(gs, D) : (¢, D)= (gs,Ds) A Dy # 0}
foreach (¢s,D;) € succ do
if ¥(¢s,D’) € VISITED ¢ D, Z D'
add (gs,D,) to VISITED
add (gs,Ds) to WAITING
fi
od
od

The termination of the algorithm depends upon
the construction of a finite quotient of the infinite
transition system given by the TSA semantics. Im-
portant aspects of such a construction are 1) the use
of symbolic states (g, D) where ¢ is a location as usual
and D is a clock constraint system which represents
the set of clock valuations satisfying it, and 2) the

definition of a transition relation —- between sym-
bolic states. Lack of space prevents us from giving
further details here; the reader is referred to [15] for
an excellent discussion of these issues.

The problem is to arrange for the compact stor-
age of the set VISITED of visited state vectors,
where a major difficulty has been to combine a good
encoding of the locations (the discrete part of the sys-
tem) with a good encoding for the clock valuations
(the continuous part). This problem is addressed in
the following section.

4 Sharing trees

The sharing tree data structure [16] has been de-
signed for the compact storage of large sets of tu-
ples. Their efficacy in the verification of untimed
systems has been demonstrated; of particular inter-
est to us is the work reported in [6, 7] which shows
impressive space reductions for sets of state vectors

{p1,p2,"' ,pc} <U1,112,"' :Ud> ((51,7”1),(52,7”2),"' 7(3namn)>

<¢17¢27"' 5¢T>

Control Data

Network

Clock Valuation

LOCATION - ¢

CLOCK VALUATION(S) - D

Figure 1: Structure of a PCANDLE state vector

in which each vector is very similar to the location
component of a CANDLE state vector.

Definition 1 A sharing tree is a rooted acyclic
graph (N, V, val,r, succ) where N = Nog + Ny --- +
Ny, with k > 0, is a finite set of nodes which are
organised into k + 1 layers, N; being the set of nodes
of layer 1,0 < i < k; V is a set of values, T,L ¢ V,
with valuation function val : N — VU{T,L}; r is
the root node, Nog = {r} and Vn € N e val(n) =
T < n € Ny; succ : N — 2N s the suc-
cessor function which for a given node, n € N,
identifies the set of all nodes, succ(n) C N;iq,
which are directly descended from n; and the fol-
lowing properties hold: 1) Vi | 0 < i < k,Vn €
N o succ(n) C Nji1: each nodes has all of its
successors in the next layer; 2) Vn € N,Vs,s €
succ(N) o s # s = wal(s1) # val(s2): a node
does not have distinct successors with equal values;
3)Vi|0< i< kVn,n € N; | ng # ny e
val(ny) = wval(ny) = succ(m) # succ(ng): if
2 or more nodes in the same layer have the same
values then they have different sets of successors;
4)¥n € Newal(n)=1 = succ(n)=05)Vne
N e suce(n) =0 = (val(n) = L Vwal(n)=T)

The elements of a sharing tree are just
those tuples of values which occur by follow-
ing a path from the root node to a node
whose value is 1. For example, figure 2 shows
a sharing tree representing the set of tuples:
{(aa ba d)a (a7 C, d)7 (0,, ba da evg)v (0,, b: d:fag)a
(aaCadaevg)v(a'acadafag)}'

The data compression achieved by a sharing tree
arises from the guaranteed sharing of all identical
prefixes and a ‘best-effort’ sharing of identical suf-
fixes. It is clear that a set of state vectors will usu-
ally contain many states that differ in few compo-
nents and so allow for considerable sharing. The use
of a sharing tree for the state store in a reachabil-
ity analysis requires the partitioning of each state
vector (figure 1) into a tuple of values, where each
tuple component is allocated to a distinct layer in the
tree. The mapping of components of the state vec-
tor into tuple components and the ordering of com-
ponents within tuples can have a significant impact
upon the space reductions achieved [7]. An impor-
tant property of a sharing tree is that it can contain
tuples of differing lengths. This allows considerable
discretion in the mapping of variable length com-
ponents of the state vector, for example the message

Figure 2: Sharing Tree Example

queues. The key observation concerning the suitabil-
ity of sharing trees in the analysis of timed systems
is that the clock constraint component D of a sym-
bolic state (¢, D) can be represented simply by one or
more components of the complete state tuple and so
can be easily incorporated into the state store. This
contrasts significantly with approaches based upon
a BDD representation of the state store where this
integration is much more problematic.

5 Related work

Representation of timing constraints by DBMs was
proposed by Dill [5] and has been preferred in the
most efficient verification tools for timed systems,
such as KRONOS [8] and UPPAAL [12].

Wong-Toi and Dill [14] and Balarin [3] have each
shown techniques for encoding DBMs using BDDs
and incorporating them into BDD encodings of the
transition relation, approximating unions of zones
using convex hulls. Bozga et. al. [4] offer a canoni-
cal representation of discretized sets of clock config-
urations using NDDs' [2], which are a BDD-based
encoding amenable to combination with a symbolic
representation of the discrete part of the system.

Larsen et. al. [11] propose a compact encoding

INumerical Decision Diagrams

for DBMs which provides a minimal and canonical
representation of clock constraints and allows for effi-
cient inclusion checking between constraint systems.
They do not consider how this representation may be
combined with a symbolic representation of the rest
of the system. Their approach is orthogonal to ours
and it would be interesting to consider their combi-
nation experimentally.

Larsen et. al. [13] have recently proposed clock
difference diagrams as a data structure for the com-
pact representation of unions of zones. CDDs show
some similarities both with BDDs and sharing trees.
As far as we know, they remain to be used in prac-
tice.

6 Conclusions and further work

In this paper, we have proposed the use of shar-
ing trees for the representation of the state space
in the reachability analysis of timed systems. We
believe that there is good reason to suppose that
such a representation will offer significant space re-
duction, particularly in the analysis of asynchronous,
data-bearing systems. The use of this representation
comes with a time cost by comparison with the use
of a traditional hash table but there is no reason to
suppose that this penalty will be any greater in the
analysis of timed systems than it is in the analysis
of untimed systems where it has been shown to be
acceptable in many circumstances [6, 7]. These con-
clusions remain to be confirmed by experiment.

References

[1] L. Aceto, A. Burgueflo, and K. Larsen. Model
checking via reachability testing for timed au-
tomata. Technical report, BRICS,Aarhus Uni-
versity, 1997.

[2] E. Asarin, M. Bozga, A. Kerbrat, O. Maler,
A. Pnueli, and A. Rasse. Data structures for
the verification of timed automata. In O. Maler,
editor, Proc. 1st Int. Workshop on Hybrid and
Real-Time Systems (HART’97), volume 1201 of
Lecture Notes in Computer Science, pages 346—
360. Springer Verlag, March 1997.

[3] F. Balarin. Approximate reachability analysis
of timed automata. In Proc. of 17th IEEE Real
Time Systems Symposium, pages 52—61. IEEE
Computer Society Press, 1996.

[4] M. Bozga, O. Maler, A. Pnueli, and S. Yovine.
Some progress in the symbolic verification of
timed automata. volume 1254 of Lecture Notes
in Computer Science, pages 179-190, Haifa, Is-
rael, June 1997. Springer Verlag.

[5] D. Dill. Timing assumptions and verification of
finite state concurrent systems. In J. Sifakis,

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

editor, Automatic Verification Methods for Fi-
nite State Systems, volume 407 of Lecture Notes
in Computer Science, pages 197-212. Springer
Verlag, 1989.

F. Gagnon, J.-C. Grégoire, and D. Zampunieris.
Sharing tree for “on-the-fly” verification. In
Proc. Int. Conf. on Formal Description Tech-
niques VIII (FORTE’95). IEEE Computer So-
ciety Press, 1995.

J.-Ch. Grégoire. State space compression in
SPIN with ge-sets. In Proc. 2nd SPIN Work-
shop, Rutgers University, New Jersey, USA,
August 1996.

T. Henzinger, X. Nicollin, J. Sifakis, and
S. Yovine. Symbolic model checking for real-
time systems. Information and Computation,
111(2):193-244, 1994.

ISO/DIS 11898: Road Vehicles — interchange of
digital information — Controller Area Network
(CAN) for high speed communication, 1992.

D. Kendall, S. Bradley, W.D. Henderson, and
A.P. Robson. bCANDLE: Formal modelling and
analysis of CAN control systems. In Proceedings
of 4th IEEE Real Time Technology and Appli-
cations Symposium (RTAS’98), pages 171-177.
IEEE Computer Society Press, June 1998.

K. Larsen, F. Larsson, P. Pettersson, and Wang
Yi. Efficient verification of real-time systems:
Compact data structure and state-space reduc-
tion. In Proc. of 18th IEEE Real Time Systems
Symposium, December 1997.

K. Larsen, P. Pettersson, and Wang Yi.
UPPAAL in a Nutshell. Springer Interna-
tional Journal on Software Tools for Technology
Transfer, October 1997.

K. Larsen, C. Weise, Wang Yi, and J. Pearson.
Clock difference diagrams. Technical Report Nr
98/99, DoCs, Uppsala University, August 1998.
ISSN 0283-0574.

H. Wong-Toi and D. Dill. Approximations for
verifying timing properties. In T. Rus and
C. Rattray, editors, Theories and Ezperiences
for Real-time System Development. World Sci-
entific Publishing, 1994.

S. Yovine. Model checking timed automata. In
G. Rozenberg and F. Vaandrager, editors, Em-
bedded Systems, Papers from the European Ed-
ucational Forum School on Embedded Systems,
Veldhoven, The Netherlands, Lecture Notes in
Computer Science. Springer Verlag, 1997.

D. Zampuniéris. The Sharing Tree Data Struc-
ture. PhD thesis, Facultés Universitaires Notre-
Dame de la Paix, Namur, Belgium, May 1997.

