MODELLING AND ANALYSIS OF BROADCASTING EMBEDDED CONTROL SYSTEMS

D.Kendall W.D.Henderson A.P.Robson

Department of Computing, University of Northumbria at Newcastle, Ellison Place, Newcastle upon Tyne, NE1
8ST; Tel: +44 191 227 3512; Email:{david.kendall, william.henderson, adrian.robson}@unn.ac.uk

1 Introduction

This paper introduces a framework for the de-
velopment, modelling and analysis of distributed,
real-time control systems which communicate using
the deterministic broadcast communication protocol,
CAN. We adopt a hierarchical approach in which sys-
tem designs are expressed in the high-level, Ada-like,
language, CANDLE, which is given a timed tran-
sition semantics by translation to a base language,
bCANDLE (pronounced ‘basic candle’) which is a
simple but expressive process language with a value-
passing, broadcast communication primitive, mes-
sage priorities and an explicit time construct. The
formal semantics of PCANDLE can be found in [6].

Broadcast communication is used frequently in
the implementation of embedded systems, but has re-
ceived comparatively little attention from the formal
methods community in contrast to point-to-point
synchronous communication. Timed transition sys-
tems have proved to be very successful models for
the analysis of real-time systems [4] and they arise
naturally from a variety of formalisms for system de-
scription. We argue in [6] that there is a need for an
approach to the description of broadcasting systems
which adopts a broadcast mechanism as its commu-
nication primitive, with the intention of facilitating
the construction of a timed transition system model
which can be simulated and analysed.

We wish to promote the production of formal sys-
tem models which arise almost as a by-product of a
‘natural’ development process. A model is intended
to be a conservative approximation of its associated
implementation, i.e. the behaviours of the implemen-
tation should be a subset of the behaviours of the
model. Given such a conservative approximation, by
restricting attention to requirements which are ex-
pressed as properties of all behaviours of the model,
it is sufficient to establish that the model satisfies a
requirement in order to conclude that the implemen-
tation also satisfies the requirement. This approach
is similar in some respects to the timing analysis of
Ada programs undertaken by Corbett [2]. However,
the work described there is restricted to single pro-
cessor systems, whereas we are concerned primarily
with distributed systems.

Cj Computing
Node

Sensors/
Actuators

?
) o

Bus

Figure 1: Control system model

2 Informal control system model

Figure 1 shows a typical organisation for the class
of control systems to be studied. A number of tasks
may be allocated to each computing node and will
share the processing unit using some fixed schedul-
ing policy. In order to simplify the model and to
facilitate system reorganization, we assume that all
tasks communicate using (logically) a single mecha-
nism, whether they share a computing node or not.
So even tasks which share a processor, communicate
by broadcasting messages and do not have uncon-
strained access to shared memory. In addition, each
computing node may have access to a number of sen-
sors and actuators which form part of the interface to
the controlled system. It is required that sensors and
actuators are not shared but that each is accessed by
a single task.

We have targetted our development approach at a
specific communication network, namely Controller
Area Network (CAN). CAN uses a simple, deter-
ministic, broadcast communication protocol which
makes it not only attractive to developers but also
amenable to formal modelling and analysis. It is
gaining increasing importance and attention in the
implementation of distributed real-time systems [5].

3 Distributed Robot Controller

We illustrate the construction of a timed transition
model for a CAN-based system using the example
of a distributed robot controller which has been dis-
cussed in [2] and elsewhere. Although only a simple
system, it allows the demonstration of most of the

features of CANDLE including its languages and ap-
proach to development and verification.

The system requires commands to be communi-
cated to a robot from time to time. Each command
is computed based upon the readings delivered by
two sensors. We assume an implementation which
uses three distributed tasks executing in parallel and
communicating via a CAN. The tasks interact with
the robot using a pair of sensors and a single actua-
tor. There is a task responsible for reading each of
the sensors and a further task to integrate the read-
ings and send a command to the robot. The inter-
action with sensors and actuators is modelled and
implemented by simple sequential operations (e.g.
Sensorl.ReadSensor).

The main requirement of the system is that the
command which is sent to the robot must be based
upon readings received from each of the sensors with
a maximum separation between the times of the
readings. It is the job of the Integrator task to re-
ceive the sensor readings, compute a command and
send a signal to the robot. It should be able to re-
ceive readings from the two sensors in either order.
In order to satisfy the maximum separation require-
ment, following the receipt of the first sensor reading,
the integrator task waits for only a bounded length
of time for the second reading to arrive. Figure 2
illustrates the use of CANDLE to describe the main
features of the system and the implementation of one
of the sensor tasks.

The sensor tasks are activated periodically. At
regular intervals, they take a sensor reading and
broadcast it until an acknowledgement is received.
This ensures that a fresh sensor reading is available
to the integrator task. The integrator task repeat-
edly waits to receive a reading from either sensor and
then waits for a limited period for the other sensor
reading. If this reading arrives in time, the task uses
both readings to compute a command which it then
signals to the robot; otherwise the task tries again
to receive both readings within the maximum sepa-
ration distance.

Data clauses in CANDLE (such as with data
Sensorl) establish a link to data specifications and
implementations which are constructed using a suit-
able external language. Data abstraction and the ex-
traction of state transformers from specifications is
performed ‘by hand’; we are investigating the use of
PVS to support this process. Bounds upon the per-
formance of data operations are obtained with the
help of a C code timing tool, in conjunction with a
simple multi-tasking scheduling analysis as described
in [1].

A system description in CANDLE is used as the
primary source both for the generation of system
code and for the generation of a model for simu-

system DRC is
Sensorl | Sensor2 | Integrator
where
visible
Sensorl.ReadSensor, Sensor2.ReadSensor,
Integrator.Signal

network is
channel is <ackl, ack2, sensorl, sensor2>
end_network

task Sensorl with data Sensorl
using
constant SENSOR1_PERIOD, SENSOR1_EXPIRE
var val
op ReadSensor
is
every SENSOR1_PERIOD do
loop DELIVER do
ReadSensor; snd(sensori,val);
select
when rcv(ackl) do exit DELIVER
or
when elapse SENSOR1_EXPIRE do skip
end_select
end_loop DELIVER
end_every
end_task

/* task Sensor2 ... similar to Semsorl */

/* task Integrator ... */

end_system

Figure 2: Outline of CANDLE system file for dis-
tributed robot controller

lation and verification, in keeping with the spirit of
WYVIWYE!.

4 Constructing a timed transition
model

A CANDLE system description must be translated
into bPCANDLE before its behaviour can be simu-
lated or verified. We use the distributed robot con-
troller example to introduce informally the transla-
tion and to illustrate salient points.

A bCANDLE model represents the state and be-
haviour of tasks and network channels. The be-
haviour of the model follows a two phase pattern, as
discussed in [4], in which instantaneous action transi-
tions are interspersed with time transitions in which
time advances in all components. The model is con-
structed from a number of development files which
are described in table 1.

Figure 3 gives the bCANDLE model for the dis-

IWhat You Verify Is What You Execute

Sensorl | Sensor2 | Integrator
where

Sensorl =
[pre_timer];

(Deliver [> exit_DELIVER -> [POST_EXIT_DELIVER];idle)

[>

[approx_SENSOR1_PERIOD]; [post_timer] ; [jump];Sensorl

Deliver =
[ReadSensor] ;
[pre_snd]; k!sensorl._;
[pre_select1];

[post_snd];

(k?ackl._ ; [post_rcv]; [PRE_EXIT_DELIVER] ; idle
+
[approx_SENSOR1_EXPIRE] ; [post_timer]
);
[jump] ; Deliver
/* Sensor2 = . similar to Sensorl */
Integrator =
Gather [> exit_GATHER -> [POST_EXIT_GATHER];
[Computel; [Signall; [jumpl; Integrator
Gather =
[pre_select2];
(k?sensorl._;
[post_rcv]; [pre_select3];
(k?sensor2._;
[post_rcv]; [pre_snd]; k'ackl._; [post_snd];
[pre_snd]l; k'ack2._; [post_snd];
[PRE_EXIT_GATHER]; idle
+
[approx_PROXIMITY_MAX];
[post_timer]
)
+
k?sensor2._;
[post_rcv]; [pre_select4];
(k?sensorl._;
[post_rcv]; [pre_snd]; k'ackl._; [post_snd];
[pre_snd]; k'!ack2._; [post_snd]l;
[PRE_EXIT_GATHER] ; idle
+
[approx_PROXIMITY_MAX];
[post_timer]
)
);
[jump]; Gather
network
/* pi dlb dub d1B duB */
k = (ackl: 1, 37, 47, 10, 12;
ack2: 2, 37, 47, 10, 12;

sensorl: 3, 43, 53, 10, 12;
sensor2: 4, 43, 53, 10, 12)

data
_ =0
__exit_DELIVER = false
__exit_GATHER = false

Figure 3: bCANDLE model of Distributed Robot
Controller

.ds Specification files for the data state and
sequential operations of of each system
task. Model-based specification lan-
guages such as B, Z or VDM can be
used. Specifications are used to de-
velop sequential code following a stan-
dard methodology and are also used to
develop abstract data specifications for
system verification.

.can | CANDLE system file: contains a de-
scription of the dynamic behaviour
of tasks including communication and
synchronisation. Declares broadcast
channels, including message identifiers
and their priorities.

.sa System architecture file: maps tasks to
processors, communication channels to
CAN buses, CANDLE data to specifi-
cations and implementations, etc.

.cd Component description files: describes
the properties of system components,
e.g. processors, CAN buses and clocks
in order to allow the prediction of tim-
ing properties.

C source and object files developed
from data specification using a stan-
dard development methodology.

.bc bCANDLE file: low-level system model
with formal timed transition seman-
tics. Generated automatically from in-
put files.

.tr Trace file which is either output by the
simulator as a history of a simulation
run or which can be used as input to the
simulator to guide a simulation session.
.tg Timed graph file: suitable for input to
external model checkers such as KRO-
NOS and UPPAAL.

.ts Temporal specification file: a specifica-
tion of temporal system properties ei-
ther using a logic (such as TCTL [4])
acceptable to model checker or given by
a description of a specification automa-
ton.

Table 1: CANDLE development files

tributed robot controller. It comprises 3 sections,
defining the behaviour of system tasks, network pa-
rameters and initial data state. Task behaviour is
defined in a number of possibly recursive equations
using a simple process language which is summarised
in table 2.

The construction of the model is based mainly
upon the system description (.can file) but also re-
lies upon information derived from the other system
files. The code for each sequential operation is anal-
ysed to determine the bounds (i.e. the estimated
best case and worst case execution times) on its ex-

kli.x Enqueue a message with identi-
fier i and value given by x for
transmission on channel k. Non-
blocking.

k?7i.x Await a message with identifier i
on channel k, store the transmit-
ted value in x. Blocking.
[Op:t1,t2] | Transform the data state accord-
ing to operation Op within the
bounds given by t1 and t2.
Evaluate the predicate p in the
current data state, if true then be-
have as T, otherwise idle.
Sequential composition: behave as
T1 then T2.

Choice: choose whichever branch
has a possible action transition.
Network and time transitions do
not resolve choice.

Interrupt: behave as T1 until T2
can make an action transition,
then behave as T2. If T1 termi-
nates then T1 [> T2 terminates.
Parallel composition: asyn-
chronous interleaving of action
transitions. Synchronous time
steps.

p—>T

T1 ; T2

T1 + T2

T1 [> T2

T1 | T2

Table 2: bCANDLE language summary

ecution. It is necessary to know the architecture of
the node on which the task is to be executed in or-
der to perform the analysis. In the case of a multi-
tasking node, the execution time bounds must be
converted into response time bounds. This analy-
sis is possible for a simple time-slicing scheduler [1].
In figure 3, every use of [...] represents a compu-
tation whose time bounds, denoted by the enclosed
symbolic name, are the bounds on the response time
for the corresponding operation. So, for example,
[Compute] represents a computation whose bounds
are the calculated response time bounds for the op-
eration Compute.

Each communication, snd(id,x) or rcv(id,x),
requires some computation time both before and af-
ter it (to allow for delays caused by configuring a
communication controller or handling an interrupt,
for example). Let [pre_snd]l, [post_snd] repre-
sent the bounds on the before and after delays for a
snd, and [pre_rcv], [post_rcv] the correspond-
ing delays for rcv. The calculation of these bounds
requires knowledge of the kernel implementation and
the hardware platform.

The modelling of timer services (whose use is im-
plied by the periodic behaviour of ReadSensor re-
quires similar information regarding their low-level
implementation. We use [pre_timer], [approx
Time] and [post_timer] to denote the bounds on

the set up time, resolution and recovery time, respec-
tively, given by a request for a delay of Time time
units.

[jump] denotes the bounds required for the exe-
cution of a jump instruction.

5 Conclusions

This paper describes work which has been under-
taken as part of an ongoing project to provide a tool-
supported engineering environment for the develop-
ment, of distributed embedded control systems.We
aim to build systems in such a way that it is possible
to extract abstract models which preserve important
features of the quantitative properties of their imple-
mentations. These models are amenable to a vari-
ety of well-developed, tool-supported analysis tech-
niques [4, 3, 7]. We believe that CAN will be an
important component in many small/medium scale
embedded control systems, because of its properties
of robustness and predictability. The approach taken
by CANDLE is intended to improve the quality of
CAN control systems by enabling a straight forward
construction of tractable system models. The major
obstacle, as always, remains the management of the
state explosion problem. We are currently seeking to
apply symbolic and partial order techniques to the
simplification of our system models.

References

[1] S Bradley, W Henderson, D Kendall, and A Robson.
A formally based hard real-time kernel. Micropro-
cessors and Microsystems, 18(9):513-521, November
1994.

[2] J.C. Corbett. Timing analysis of Ada tasking pro-
grams. IEEE Transactions on Software Engineering,
22(7):461-483, July 1996.

[3] C. Daws, A. Olivero, and S. Yovine. Verifying ET-
LOTOS programs with KRONOS. In Proc. Int. Conf.
on Formal Description Techniques VII (FORTE’94),
pages 227-242, 1994.

[4] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.
Symbolic model checking for real-time systems. In-
formation and Computation, 111(2):193-244, 1994.

[65] ISO/DIS 11898: Road Vehicles — interchange of digi-
tal information — Controller Area Network (CAN) for
high speed communication, 1992.

[6] D. Kendall, S. Bradley, W. Henderson, and A. Rob-
son. bCANDLE: Formal modelling and analysis of
CAN control systems. In Proceedings of 4th IEEE
Real Time Technology and Applications Symposium
(RTAS’98). IEEE Computer Society Press, June
1998. (to appear).

[7] K. Larsen, P. Pettersson, and Wang Yi. UPPAALin a
Nutshell. Springer International Journal on Software
Tools for Technology Transfer, October 1997.

