
MODELLING AND ANALYSIS OF BROADCASTING EMBEDDED CONTROL SYSTEMSD.Kendall W.D.Henderson A.P.RobsonDepartment of Computing, University of Northumbria at Newcastle, Ellison Place, Newcastle upon Tyne, NE18ST; Tel: +44 191 227 3512; Email:fdavid.kendall, william.henderson, adrian.robsong@unn.ac.uk1 IntroductionThis paper introduces a framework for the de-velopment, modelling and analysis of distributed,real-time control systems which communicate usingthe deterministic broadcast communication protocol,CAN. We adopt a hierarchical approach in which sys-tem designs are expressed in the high-level, Ada-like,language, CANDLE, which is given a timed tran-sition semantics by translation to a base language,bCANDLE (pronounced `basic candle') which is asimple but expressive process language with a value-passing, broadcast communication primitive, mes-sage priorities and an explicit time construct. Theformal semantics of bCANDLE can be found in [6].Broadcast communication is used frequently inthe implementation of embedded systems, but has re-ceived comparatively little attention from the formalmethods community in contrast to point-to-pointsynchronous communication. Timed transition sys-tems have proved to be very successful models forthe analysis of real-time systems [4] and they arisenaturally from a variety of formalisms for system de-scription. We argue in [6] that there is a need for anapproach to the description of broadcasting systemswhich adopts a broadcast mechanism as its commu-nication primitive, with the intention of facilitatingthe construction of a timed transition system modelwhich can be simulated and analysed.We wish to promote the production of formal sys-tem models which arise almost as a by-product of a`natural' development process. A model is intendedto be a conservative approximation of its associatedimplementation, i.e. the behaviours of the implemen-tation should be a subset of the behaviours of themodel. Given such a conservative approximation, byrestricting attention to requirements which are ex-pressed as properties of all behaviours of the model,it is su�cient to establish that the model satis�es arequirement in order to conclude that the implemen-tation also satis�es the requirement. This approachis similar in some respects to the timing analysis ofAda programs undertaken by Corbett [2]. However,the work described there is restricted to single pro-cessor systems, whereas we are concerned primarilywith distributed systems.

CPU/Memory

Comms

Controller

Timer

Computing

Node

Sensors/

Actuators

BusFigure 1: Control system model2 Informal control system modelFigure 1 shows a typical organisation for the classof control systems to be studied. A number of tasksmay be allocated to each computing node and willshare the processing unit using some �xed schedul-ing policy. In order to simplify the model and tofacilitate system reorganization, we assume that alltasks communicate using (logically) a single mecha-nism, whether they share a computing node or not.So even tasks which share a processor, communicateby broadcasting messages and do not have uncon-strained access to shared memory. In addition, eachcomputing node may have access to a number of sen-sors and actuators which form part of the interface tothe controlled system. It is required that sensors andactuators are not shared but that each is accessed bya single task.We have targetted our development approach at aspeci�c communication network, namely ControllerArea Network (CAN). CAN uses a simple, deter-ministic, broadcast communication protocol whichmakes it not only attractive to developers but alsoamenable to formal modelling and analysis. It isgaining increasing importance and attention in theimplementation of distributed real-time systems [5].3 Distributed Robot ControllerWe illustrate the construction of a timed transitionmodel for a CAN-based system using the exampleof a distributed robot controller which has been dis-cussed in [2] and elsewhere. Although only a simplesystem, it allows the demonstration of most of the

features of CANDLE including its languages and ap-proach to development and veri�cation.The system requires commands to be communi-cated to a robot from time to time. Each commandis computed based upon the readings delivered bytwo sensors. We assume an implementation whichuses three distributed tasks executing in parallel andcommunicating via a CAN. The tasks interact withthe robot using a pair of sensors and a single actua-tor. There is a task responsible for reading each ofthe sensors and a further task to integrate the read-ings and send a command to the robot. The inter-action with sensors and actuators is modelled andimplemented by simple sequential operations (e.g.Sensor1.ReadSensor).The main requirement of the system is that thecommand which is sent to the robot must be basedupon readings received from each of the sensors witha maximum separation between the times of thereadings. It is the job of the Integrator task to re-ceive the sensor readings, compute a command andsend a signal to the robot. It should be able to re-ceive readings from the two sensors in either order.In order to satisfy the maximum separation require-ment, following the receipt of the �rst sensor reading,the integrator task waits for only a bounded lengthof time for the second reading to arrive. Figure 2illustrates the use of CANDLE to describe the mainfeatures of the system and the implementation of oneof the sensor tasks.The sensor tasks are activated periodically. Atregular intervals, they take a sensor reading andbroadcast it until an acknowledgement is received.This ensures that a fresh sensor reading is availableto the integrator task. The integrator task repeat-edly waits to receive a reading from either sensor andthen waits for a limited period for the other sensorreading. If this reading arrives in time, the task usesboth readings to compute a command which it thensignals to the robot; otherwise the task tries againto receive both readings within the maximum sepa-ration distance.Data clauses in CANDLE (such as with dataSensor1) establish a link to data speci�cations andimplementations which are constructed using a suit-able external language. Data abstraction and the ex-traction of state transformers from speci�cations isperformed `by hand'; we are investigating the use ofPVS to support this process. Bounds upon the per-formance of data operations are obtained with thehelp of a C code timing tool, in conjunction with asimple multi-tasking scheduling analysis as describedin [1].A system description in CANDLE is used as theprimary source both for the generation of systemcode and for the generation of a model for simu-

system DRC isSensor1 | Sensor2 | IntegratorwherevisibleSensor1.ReadSensor, Sensor2.ReadSensor,Integrator.Signalnetwork ischannel is <ack1, ack2, sensor1, sensor2>end_networktask Sensor1 with data Sensor1usingconstant SENSOR1_PERIOD, SENSOR1_EXPIREvar valop ReadSensorisevery SENSOR1_PERIOD doloop DELIVER doReadSensor; snd(sensor1,val);selectwhen rcv(ack1) do exit DELIVERorwhen elapse SENSOR1_EXPIRE do skipend_selectend_loop DELIVERend_everyend_task/* task Sensor2 ... similar to Sensor1 *//* task Integrator ... */end_systemFigure 2: Outline of CANDLE system �le for dis-tributed robot controllerlation and veri�cation, in keeping with the spirit ofWYVIWYE1.4 Constructing a timed transitionmodelA CANDLE system description must be translatedinto bCANDLE before its behaviour can be simu-lated or veri�ed. We use the distributed robot con-troller example to introduce informally the transla-tion and to illustrate salient points.A bCANDLE model represents the state and be-haviour of tasks and network channels. The be-haviour of the model follows a two phase pattern, asdiscussed in [4], in which instantaneous action transi-tions are interspersed with time transitions in whichtime advances in all components. The model is con-structed from a number of development �les whichare described in table 1.Figure 3 gives the bCANDLE model for the dis-1What You Verify Is What You Execute

Sensor1 | Sensor2 | IntegratorwhereSensor1 =[pre_timer];(Deliver [> exit_DELIVER -> [POST_EXIT_DELIVER];idle)[>[approx_SENSOR1_PERIOD];[post_timer];[jump];Sensor1Deliver =[ReadSensor];[pre_snd]; k!sensor1._; [post_snd];[pre_select1];(k?ack1._ ; [post_rcv]; [PRE_EXIT_DELIVER] ; idle+[approx_SENSOR1_EXPIRE] ; [post_timer]);[jump] ; Deliver/* Sensor2 = ... similar to Sensor1 */Integrator =Gather [> exit_GATHER -> [POST_EXIT_GATHER];[Compute]; [Signal]; [jump]; IntegratorGather =[pre_select2];(k?sensor1._;[post_rcv]; [pre_select3];(k?sensor2._;[post_rcv]; [pre_snd]; k!ack1._; [post_snd];[pre_snd]; k!ack2._; [post_snd];[PRE_EXIT_GATHER]; idle+[approx_PROXIMITY_MAX];[post_timer])+k?sensor2._;[post_rcv]; [pre_select4];(k?sensor1._;[post_rcv]; [pre_snd]; k!ack1._; [post_snd];[pre_snd]; k!ack2._; [post_snd];[PRE_EXIT_GATHER]; idle+[approx_PROXIMITY_MAX];[post_timer]));[jump]; Gathernetwork/* pi dlb dub dlB duB */k = (ack1: 1, 37, 47, 10, 12;ack2: 2, 37, 47, 10, 12;sensor1: 3, 43, 53, 10, 12;sensor2: 4, 43, 53, 10, 12)data_ = @__exit_DELIVER = false__exit_GATHER = falseFigure 3: bCANDLE model of Distributed RobotController

.ds Speci�cation �les for the data state andsequential operations of of each systemtask. Model-based speci�cation lan-guages such as B, Z or VDM can beused. Speci�cations are used to de-velop sequential code following a stan-dard methodology and are also used todevelop abstract data speci�cations forsystem veri�cation..can CANDLE system �le: contains a de-scription of the dynamic behaviourof tasks including communication andsynchronisation. Declares broadcastchannels, including message identi�ersand their priorities..sa System architecture �le: maps tasks toprocessors, communication channels toCAN buses, CANDLE data to speci�-cations and implementations, etc..cd Component description �les: describesthe properties of system components,e.g. processors, CAN buses and clocksin order to allow the prediction of tim-ing properties..c, .o C source and object �les developedfrom data speci�cation using a stan-dard development methodology..bc bCANDLE �le: low-level system modelwith formal timed transition seman-tics. Generated automatically from in-put �les..tr Trace �le which is either output by thesimulator as a history of a simulationrun or which can be used as input to thesimulator to guide a simulation session..tg Timed graph �le: suitable for input toexternal model checkers such as KRO-NOS and UPPAAL..ts Temporal speci�cation �le: a speci�ca-tion of temporal system properties ei-ther using a logic (such as TCTL [4])acceptable to model checker or given bya description of a speci�cation automa-ton.Table 1: CANDLE development �lestributed robot controller. It comprises 3 sections,de�ning the behaviour of system tasks, network pa-rameters and initial data state. Task behaviour isde�ned in a number of possibly recursive equationsusing a simple process language which is summarisedin table 2.The construction of the model is based mainlyupon the system description (.can �le) but also re-lies upon information derived from the other system�les. The code for each sequential operation is anal-ysed to determine the bounds (i.e. the estimatedbest case and worst case execution times) on its ex-

k!i.x Enqueue a message with identi-�er i and value given by x fortransmission on channel k. Non-blocking.k?i.x Await a message with identi�er ion channel k, store the transmit-ted value in x. Blocking.[Op:t1,t2] Transform the data state accord-ing to operation Op within thebounds given by t1 and t2.p -> T Evaluate the predicate p in thecurrent data state, if true then be-have as T, otherwise idle.T1 ; T2 Sequential composition: behave asT1 then T2.T1 + T2 Choice: choose whichever branchhas a possible action transition.Network and time transitions donot resolve choice.T1 [> T2 Interrupt: behave as T1 until T2can make an action transition,then behave as T2. If T1 termi-nates then T1 [> T2 terminates.T1 | T2 Parallel composition: asyn-chronous interleaving of actiontransitions. Synchronous timesteps.Table 2: bCANDLE language summaryecution. It is necessary to know the architecture ofthe node on which the task is to be executed in or-der to perform the analysis. In the case of a multi-tasking node, the execution time bounds must beconverted into response time bounds. This analy-sis is possible for a simple time-slicing scheduler [1].In �gure 3, every use of [...] represents a compu-tation whose time bounds, denoted by the enclosedsymbolic name, are the bounds on the response timefor the corresponding operation. So, for example,[Compute] represents a computation whose boundsare the calculated response time bounds for the op-eration Compute.Each communication, snd(id,x) or rcv(id,x),requires some computation time both before and af-ter it (to allow for delays caused by con�guring acommunication controller or handling an interrupt,for example). Let [pre snd], [post snd] repre-sent the bounds on the before and after delays for asnd, and [pre rcv], [post rcv] the correspond-ing delays for rcv. The calculation of these boundsrequires knowledge of the kernel implementation andthe hardware platform.The modelling of timer services (whose use is im-plied by the periodic behaviour of ReadSensor re-quires similar information regarding their low-levelimplementation. We use [pre timer], [approxTime] and [post timer] to denote the bounds on

the set up time, resolution and recovery time, respec-tively, given by a request for a delay of Time timeunits.[jump] denotes the bounds required for the exe-cution of a jump instruction.5 ConclusionsThis paper describes work which has been under-taken as part of an ongoing project to provide a tool-supported engineering environment for the develop-ment of distributed embedded control systems.Weaim to build systems in such a way that it is possibleto extract abstract models which preserve importantfeatures of the quantitative properties of their imple-mentations. These models are amenable to a vari-ety of well-developed, tool-supported analysis tech-niques [4, 3, 7]. We believe that CAN will be animportant component in many small/medium scaleembedded control systems, because of its propertiesof robustness and predictability. The approach takenby CANDLE is intended to improve the quality ofCAN control systems by enabling a straight forwardconstruction of tractable system models. The majorobstacle, as always, remains the management of thestate explosion problem. We are currently seeking toapply symbolic and partial order techniques to thesimpli�cation of our system models.References[1] S Bradley, W Henderson, D Kendall, and A Robson.A formally based hard real-time kernel. Micropro-cessors and Microsystems, 18(9):513{521, November1994.[2] J.C. Corbett. Timing analysis of Ada tasking pro-grams. IEEE Transactions on Software Engineering,22(7):461{483, July 1996.[3] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRONOS. In Proc. Int. Conf.on Formal Description Techniques VII (FORTE'94),pages 227{242, 1994.[4] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.Symbolic model checking for real-time systems. In-formation and Computation, 111(2):193{244, 1994.[5] ISO/DIS 11898: Road Vehicles { interchange of digi-tal information { Controller Area Network (CAN) forhigh speed communication, 1992.[6] D. Kendall, S. Bradley, W. Henderson, and A. Rob-son. bCANDLE: Formal modelling and analysis ofCAN control systems. In Proceedings of 4th IEEEReal Time Technology and Applications Symposium(RTAS'98). IEEE Computer Society Press, June1998. (to appear).[7] K. Larsen, P. Pettersson, and Wang Yi. UPPAAL in aNutshell. Springer International Journal on SoftwareTools for Technology Transfer, October 1997.

