
CANDLE: A HIGH LEVEL LANGUAGE AND DEVELOPMENT ENVIRONMENT FORHIGH INTEGRITY CAN CONTROL SYSTEMSD.Kendall S.P.Bradley1 W.D.Henderson A.P.RobsonDepartment of Computing, University of Northumbria at Newcastle, Ellison Place, Newcastle upon Tyne, NE18ST; Tel: +44 191 227 3512; Email:fdavid.kendall, william.henderson, adrian.robsong@unn.ac.uk1 Department of Computing Science, University of DurhamAbstractEmbedded control systems appear in many of themanufactured products upon which our society in-creasingly depends. System developers need betterdevelopment methods in order to be more con�dentthat the systems which they deliver will behave prop-erly. The need is particularly pressing in the case ofdistributed, hard real-time control systems for whichtesting is notoriously di�cult. In recent years, muchresearch has been conducted into formal techniquesfor analysing the quantitative temporal properties ofsystem models. Such work o�ers the promise of com-plementing testing in the validation of systems byapproaches which include simulation, symbolic mon-itoring, assertion checking and ver�cation.This paper discusses CANDLE, a high-level lan-guage and development environment, whose in-tended domain comprises embedded control systemsin which computing nodes communicate using one ormore Controller Area Networks (CAN). The CAN-DLE approach is novel in that it seeks to applyformal analysis to concrete implementations of dis-tributed real-time systems, not only to their speci-�cations. The essence of the approach is to providea language and development environment in which atimed transition model of a system implementationcan be produced almost as a by-product of a nat-ural development method. The model can be usedto explore system behaviour through simulation. Inaddition, a variety of abstractions can be applied inorder to allow a tractable analysis of the model usingmodel checking.KeywordsEmbedded Control Systems, Controller Area Net-work, Timed Transition Systems, Formal Modelling,Veri�cation.1 IntroductionThis paper introduces a framework for the de-velopment, modelling and analysis of distributed,real-time control systems which communicate usingthe deterministic broadcast communication protocol,c
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CAN. We adopt a hierarchical approach in which sys-tem designs are expressed in the high-level, Ada-like,language, CANDLE, which is given a timed tran-sition semantics by translation to a base language,bCANDLE (pronounced `basic candle') which is asimple but expressive process language with a value-passing, broadcast communication primitive, mes-sage priorities and an explicit time construct. Theformal semantics of bCANDLE can be found in [12].Broadcast communication is used frequently inthe implementation of embedded systems, but has re-ceived comparatively little attention from the formalmethods community in contrast to point-to-pointsynchronous communication. Timed transition sys-tems [8] have proved to be very successful models forthe analysis of real-time systems [9] and they arisenaturally from a variety of formalisms for system de-scription, see for example [1, 6]. We argue in [12] thatthere is a need for an approach to the descriptionof broadcasting systems which adopts a broadcastmechanism as its communication primitive, with theintention of facilitating the construction of a timedtransition system model which can be simulated andanalysed.The models which we produce are intended to al-low the application of automated analysis techniquesin order to investigate system properties. In par-ticular, there is a straightforward translation of ourmodels into formats which are suitable for input tothe model checkers KRONOS [5] and UPPAAL [14].With this in mind, we seek to build models whichare both accurate enough so that we can be con�-dent that the conclusions which we reach about amodel are valid for the corresponding implementa-tion, but also abstract enough so that analysis ofthe model is tractable. Our approach in this respectbuilds upon [3]. The main idea is to build a modelwhich is a \conservative approximation" of an imple-mentation. An abstract model of an implementationis a conservative approximation if every possible be-haviour of the implementation is represented by somebehaviour of the model, i.e. the behaviours of theimplementation are a subset of the behaviours of themodel. A formal demonstration of this relationshiprequires an approach such as that adopted in theProCos project [13] where a system is viewed as ahierarchy of formally expressed semantic levels from



the abstract (requirements and system architecture)to the concrete (switching circuits implemented inCMOS), in which each level can be related formallyto its neighbours in the hierarchy. However, we areinterested in short to medium term approaches toimproving the quality of control systems developedwith mass produced components. The availability offormal descriptions of such components is the excep-tion rather than the rule. In which case, we proceedby a careful, but necessarily informal, developmentof conservative approximations, using data obtainedfrom a variety of sources, including code timing anal-ysis [15], simple scheduling analysis [2] and commu-nication protocol standards [11].Given an abstract model which is a conservativeapproximation of an implementation, we restrict at-tention to requirements which are expressed as prop-erties of all behaviours of the model. In this case,it is su�cient to establish that the model satis�es arequirement in order to conclude that the implemen-tation also satis�es the requirement. This approachis similar in some respects to the timing analysis ofAda programs undertaken by Corbett [4]. However,the work described there is restricted to single pro-cessor systems, whereas we are concerned primarilywith distributed systems.2 Informal control system modelFigure 1 shows a typical organisation for the class ofcontrol systems to be studied. Control is distributedover a number of tasks which are statically allocatedto computing nodes. A computing node consists of atleast a processing unit, which has access to some lo-cal memory, one or more communication controllersand a programmable timer. Tasks communicate byusing one or more communication channels (buses) tosend and receive broadcast messages. Each commu-nication controller in a computing node is responsiblefor the node's access to a single channel. If a nodecommunicates using more than one channel then itneeds a communication controller for each channelthat it uses. A number of tasks may be allocated toa single node and will share the processing unit usingsome �xed scheduling policy. In order to simplify themodel and to facilitate system reorganization, we as-sume that all tasks communicate using (logically) asingle mechanism, whether they share a computingnode or not. So even tasks which share a proces-sor, communicate by passing messages and do nothave unconstrained access to shared memory. In ad-dition, each computing node may have access to anumber of sensors and actuators which form part ofthe interface to the controlled system. In the case ofmulti-tasking, it is assumed that sensors and actu-ators are not shared but that each is accessed by asingle task.We have targetted our development approach at a
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BusFigure 1: Control system modelspeci�c communication network, namely ControllerArea Network (CAN). CAN uses a simple, deter-ministic, broadcast communication protocol whichmakes it not only attractive to developers but alsoamenable to formal modelling and analysis. It isgaining increasing importance and attention in theimplementation of distributed real-time systems [11].3 Distributed Robot ControllerWe illustrate the construction of a timed transitionmodel for a CAN-based system using the exampleof a distributed robot controller which has been dis-cussed in [4, 10, 7]. Although only a simple system,this example allows the demonstration of nearly allfeatures of CANDLE including its languages and ap-proach to development and veri�cation.The system requires commands to be commu-nicated to a robot from time to time. Each com-mand is computed based upon the readings deliv-ered by two sensors. We assume an implementationwhich uses three distributed tasks executing in par-allel and communicating via a CAN. The tasks in-teract with the robot using a pair of sensors and asingle actuator. There is a task responsible for read-ing each of the sensors and a further task to inte-grate the readings and send a command to the robot.The interaction with sensors and actuators is mod-elled and implemented by simple sequential oper-ations (Sensor1.ReadSensor, Integrator.Signaletc.). In general, it is assumed that sensors and ac-tuators are not shared but that each is controlleddirectly by a single task; other tasks which desireaccess to a sensor/actuator must communicate theirintentions to the controlling task by sending a CANmessage.The main requirement of the system is that thecommand which is sent to the robot must be basedupon readings received from each of the sensors witha maximum separation between the times of thereadings. It is the job of the Integrator task to receivethe sensor readings, compute a command and senda signal to the robot. It should be able to receivereadings from the two sensors in either order. In or-der to satisfy the maximum separation requirement,



following the receipt of the �rst sensor reading, theIntegrator task waits for only a bounded length oftime for the second reading to arrive. Figure 2 usesCANDLE to describe the main details of implemen-tations of one of the sensor tasks and the integratortask. The implementation of the other sensor task issimilar to the one described.The sensor tasks are activated periodically. Atregular intervals, they take a sensor reading andbroadcast it until an acknowledgement is received.This ensures that a fresh sensor reading is availableto the Integrator task.The integrator task repeatedly waits to receivea reading from either sensor and then waits for alimited period for the other sensor reading. If thisreading arrives in time, the task uses both readingsto compute a command which it then signals to therobot; otherwise the task tries again to receive bothreadings within the maximum separation distance.Data clauses in CANDLE (such as with dataIntegrator) establish a link to data speci�cationsand implementations which are constructed using asuitable external language: we currently use B forspeci�cation and C for implementation. Data ab-straction and the extraction of state transformersfrom speci�cations is performed `by hand'; we areinvestigating the use of PVS to support this pro-cess. Bounds upon the performance of data opera-tions are obtained by using the C code timing tool,CINDERELLA [15] in conjunction with a simple multi-tasking scheduling analysis as described in [2].A system description in CANDLE is used as theprimary source both for the generation of systemcode and for the generation of a model for simu-lation and veri�cation, in keeping with the spirit ofWYVIWYE1.4 Constructing a timed transitionmodelA CANDLE system description must be translatedinto bCANDLE before its behaviour can be simu-lated or veri�ed. We use the distributed robot con-troller example to introduce informally the transla-tion and to illustrate salient points.A bCANDLE model represents the state and be-haviour of tasks and network channels. The be-haviour of the model follows a two phase pattern, asdiscussed in [9], in which instantaneous action transi-tions are interspersed with time transitions in whichtime advances in all components. The model is con-structed from a number of development �les whichare described in table 1. The construction arises nat-1What You Verify Is What You Execute

system DRC isSensor1 | Sensor2 | IntegratorwherevisibleSensor1.ReadSensor, Sensor2.ReadSensor,Integrator.Signalnetwork ischannel is <ack1, ack2, sensor1, sensor2>end_networktask Sensor1 with data Sensor1usingconstant SENSOR1_PERIOD, SENSOR1_EXPIREvar valop ReadSensorisevery SENSOR1_PERIOD doloop DELIVER doReadSensor; snd(sensor1,val);selectwhen rcv(ack1) do exit DELIVERorwhen elapse SENSOR1_EXPIRE do skipend_selectend_loop DELIVERend_everyend_task/* task Sensor2 ... similar to Sensor1 */task Integrator with data Integratorusingconstant PROXIMITY_MAXvar sv1, sv2op Compute, Signalisloop doloop GATHER doselectwhen rcv(sensor1,sv1) doselectwhen rcv(sensor2,sv2) dosnd(ack1); snd(ack2); exit GATHERorwhen elapse PROXIMITY_MAX do skipend_selector when rcv(sensor2,sv2) doselectwhen rcv(sensor1,sv1) dosnd(ack1); snd(ack2); exit GATHERorwhen elapse PROXIMITY_MAX do skipend_selectend_select;end_loop GATHERCompute;Signalend_loopend_taskend_systemFigure 2: CANDLE system �le for distributed robotcontroller
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.tsFigure 3: Architecture of the CANDLE developmentenvironmenturally from the use of the development environmentshown in �gure 3.Figure 4 gives the bCANDLE model for the dis-tributed robot controller. It comprises 3 sections,de�ning the behaviour of system tasks, network pa-rameters and initial data state. Task behaviour isde�ned in a number of possibly recursive equationsusing a simple process language which is summarisedin table 2.The construction of the model is based mainlyupon the system description (.can �le) but, as withthe construction of the network model, it relies uponinformation derived from a number of other sources.The code for each sequential operation is analysed todetermine the bounds (i.e. the estimated best caseand worst case execution times) on its execution. Itis necessary to know the architecture of the node onwhich the task is to be executed in order to performthe analysis. In the case of a multi-tasking node,the execution time bounds must be converted intoresponse time bounds. This analysis is possible fora simple time-slicing scheduler [2]. In �gure 4, everyuse of [...] represents a computation whose timebounds, denoted by the enclosed symbolic name, arethe bounds on the response time for the correspond-ing operation. So, for example, [Compute] repre-sents a computation whose bounds are the calculatedresponse time bounds for the operation Compute.Each communication, snd(id,x) or rcv(id,x),requires some computation time both before and af-ter it (to allow for delays caused by con�guring a

Sensor1 | Sensor2 | IntegratorwhereSensor1 =[pre_timer];(Deliver [> exit_DELIVER -> [POST_EXIT_DELIVER];idle)[>[approx_SENSOR1_PERIOD];[post_timer];[jump];Sensor1Deliver =[ReadSensor];[pre_snd]; k!sensor1._; [post_snd];[pre_select1];(k?ack1._ ; [post_rcv]; [PRE_EXIT_DELIVER] ; idle+[approx_SENSOR1_EXPIRE] ; [post_timer]);[jump] ; Deliver/* Sensor2 = ... similar to Sensor1 */Integrator =Gather [> exit_GATHER -> [POST_EXIT_GATHER];[Compute]; [Signal]; [jump]; IntegratorGather =[pre_select2];(k?sensor1._;[post_rcv]; [pre_select3];(k?sensor2._;[post_rcv]; [pre_snd]; k!ack1._; [post_snd];[pre_snd]; k!ack2._; [post_snd];[PRE_EXIT_GATHER]; idle+[approx_PROXIMITY_MAX];[post_timer])+k?sensor2._;[post_rcv]; [pre_select4];(k?sensor1._;[post_rcv]; [pre_snd]; k!ack1._; [post_snd];[pre_snd]; k!ack2._; [post_snd];[PRE_EXIT_GATHER]; idle+[approx_PROXIMITY_MAX];[post_timer]));[jump]; Gathernetwork/* pi dlb dub dlB duB */k = (ack1: 1, 37, 47, 10, 12;ack2: 2, 37, 47, 10, 12;sensor1: 3, 43, 53, 10, 12;sensor2: 4, 43, 53, 10, 12)data_ = @__exit_DELIVER = false__exit_GATHER = falseFigure 4: bCANDLE model of Distributed RobotController



.ds Speci�cation �les for the data state andsequential operations of of each systemtask. Model-based speci�cation lan-guages such as B, Z or VDM can beused. Speci�cations are used to de-velop sequential code following a stan-dard methodology and are also used todevelop abstract data speci�cations forsystem veri�cation..can CANDLE system �le: contains a de-scription of the dynamic behaviourof tasks including communication andsynchronisation. Declares broadcastchannels, including message identi�ersand their priorities..sa System architecture �le: maps tasks toprocessors, communication channels toCAN buses, CANDLE data to speci�-cations and implementations, etc..cd Component description �les: describesthe properties of system components,e.g. processors, CAN buses and clocksin order to allow the prediction of tim-ing properties..c, .o C source and object �les developedfrom data speci�cation using a stan-dard development methodology..bc bCANDLE �le: low-level system modelwith formal timed transition seman-tics. Generated automatically from in-put �les..tr Trace �le which is either output by thesimulator as a history of a simulationrun or which can be used as input to thesimulator to guide a simulation session..tg Timed graph �le: suitable for input toexternal model checkers such as KRO-NOS and UPPAAL..ts Temporal speci�cation �le: a speci�ca-tion of temporal system properties ei-ther using a logic (such as TCTL [1])acceptable to model checker or given bya description of a speci�cation automa-ton.Table 1: CANDLE development �lescommunication controller or handling an interrupt,for example). Let [pre snd], [post snd] repre-sent the bounds on the before and after delays for asnd, and [pre rcv], [post rcv] the correspond-ing delays for rcv. The calculation of these boundsrequires knowledge of the kernel implementation andthe hardware platform.The modelling of timer services (whose use is im-plied by the periodic behaviour of ReadSensor re-quires similar information regarding their low-levelimplementation. We use [pre timer], [approxTime] and [post timer] to denote the bounds on

k!i.x Enqueue a message with identi-�er i and value given by x fortransmission on channel k. Non-blocking.k?i.x Await a message with identi�er ion channel k, store the transmit-ted value in x. Blocking.[Op:t1,t2] Transform the data state accord-ing to operation Op within thebounds given by t1 and t2.p -> T Evaluate the predicate p in thecurrent data state, if true then be-have as T, otherwise idle.T1 ; T2 Sequential composition: behave asT1 then T2.T1 + T2 Choice: choose whichever branchhas a possible action transition.Network and time transitions donot resolve choice.T1 [> T2 Interrupt: behave as T1 until T2can make an action transition,then behave as T2. If T1 termi-nates then T1 [> T2 terminates.T1 | T2 Parallel composition: asyn-chronous interleaving of actiontransitions. Synchronous timesteps.Table 2: bCANDLE language summarythe set up time, resolution and recovery time, respec-tively, given by a request for a delay of Time timeunits.[jump] denotes the bounds required for the exe-cution of a jump instruction.5 Conclusions and Further WorkThis paper describes work which has been under-taken as part of an ongoing project to provide atool-supported engineering environment for the de-velopment of distributed embedded control systems.The importance of quantitative timing analysis ofsuch systems has been recognised for some time.Quantitative timing properties of systems dependdirectly upon their implementations. We aim tobuild systems in such a way that it is possible toextract abstract models which are conservative ap-proximations of their implementations. These mod-els are amenable to a variety of well-developed, tool-supported analysis techniques [9, 5, 14].We believe that CAN will be an important com-ponent in many small/medium scale embedded con-trol systems, because of its properties of robustnessand predictability. The approach taken by CANDLEis intended to improve the quality of CAN controlsystems by enabling a straight forward constructionof tractable system models.



The major obstacle, as always, remains the man-agement of the state explosion problem. We are cur-rently seeking to apply symbolic and partial ordertechniques to the simpli�cation of our system mod-els.A constraint on the class of systems to which ourapproach is applicable arises from the fact that ourimplementation of multi-tasking is currently limitedto preemptive time-sliced scheduling, which allowsan independent analysis to calculate the WCRT ofall computations. Clearly there are some systemsfor which this may make it di�cult occasionally toachieve the responsiveness that is required by sometasks; however, there are many for which this ap-proach to scheduling is adequate. Future work willexamine the extension of our model to accomodate�xed priority preemptive scheduling. Such an exten-sion is possible but leads to harder model-checkingand may constrain further the size of systems whichcan be analysed automatically. As usual, there is atrade-o� to be made between the simplicity of theanalysis and the sophistication of the implementa-tion.An essential requirement to allow the develop-ment and analysis of large-scale applications is formodular design, implementation and veri�cation.CANDLE, in its full form, permits the compositionof system descriptions, allowing channel sharing andthe renaming of message identi�ers where necessary.Inevitably, however, in general, composition does notpreserve all system properties when the composedsystems broadcast on a shared channel. We are cur-rently investigating the use of rely-guarantee reason-ing to allow the veri�cation of some properties ofcompound systems based only on the constructionand analysis of models of the components.Finally, we wish to investigate to what extent itis possible and useful to develop an extended systemmodel to reason about behaviour in the presence ofnetwork errors.References[1] R. Alur, C. Courcoubetis, and D. Dill. Automata formodelling real-time systems. In Proc. 17th ICALP,volume 443, pages 322{335, 1990.[2] S Bradley, W Henderson, D Kendall, and A Robson.A formally based hard real-time kernel. Micropro-cessors and Microsystems, 18(9):513{521, November1994.[3] S Bradley, W D Henderson, D Kendall, and A PRobson. Designing and implementing correct real-time systems. In H Langmaack, W-P de Roever, andJ Vytopil, editors, Formal Techniques in Real-Timeand Fault-Tolerant Systems FTRTFT '94, Lubeck,Lecture Notes in Computer Science 863, pages 228{246. Springer-Verlag, September 1994.
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