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Abstract

Embedded control systems appear in many of the
manufactured products upon which our society in-
creasingly depends. System developers need better
development methods in order to be more confident
that the systems which they deliver will behave prop-
erly. The need is particularly pressing in the case of
distributed, hard real-time control systems for which
testing is notoriously difficult. In recent years, much
research has been conducted into formal techniques
for analysing the quantitative temporal properties of
system models. Such work offers the promise of com-
plementing testing in the validation of systems by
approaches which include simulation, symbolic mon-
itoring, assertion checking and verfication.

This paper discusses CANDLE, a high-level lan-
guage and development environment, whose in-
tended domain comprises embedded control systems
in which computing nodes communicate using one or
more Controller Area Networks (CAN). The CAN-
DLE approach is novel in that it seeks to apply
formal analysis to concrete implementations of dis-
tributed real-time systems, not only to their speci-
fications. The essence of the approach is to provide
a language and development environment in which a
timed transition model of a system implementation
can be produced almost as a by-product of a nat-
ural development method. The model can be used
to explore system behaviour through simulation. In
addition, a variety of abstractions can be applied in
order to allow a tractable analysis of the model using
model checking.
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1 Introduction

This paper introduces a framework for the de-
velopment, modelling and analysis of distributed,
real-time control systems which communicate using
the deterministic broadcast communication protocol,
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CAN. We adopt a hierarchical approach in which sys-
tem designs are expressed in the high-level, Ada-like,
language, CANDLE, which is given a timed tran-
sition semantics by translation to a base language,
bCANDLE (pronounced ‘basic candle’) which is a
simple but expressive process language with a value-
passing, broadcast communication primitive, mes-
sage priorities and an explicit time construct. The
formal semantics of PBCANDLE can be found in [12].

Broadcast communication is used frequently in
the implementation of embedded systems, but has re-
ceived comparatively little attention from the formal
methods community in contrast to point-to-point
synchronous communication. Timed transition sys-
tems [8] have proved to be very successful models for
the analysis of real-time systems [9] and they arise
naturally from a variety of formalisms for system de-
scription, see for example [1, 6]. We argue in [12] that
there is a need for an approach to the description
of broadcasting systems which adopts a broadcast
mechanism as its communication primitive, with the
intention of facilitating the construction of a timed
transition system model which can be simulated and
analysed.

The models which we produce are intended to al-
low the application of automated analysis techniques
in order to investigate system properties. In par-
ticular, there is a straightforward translation of our
models into formats which are suitable for input to
the model checkers KRONOS [5] and UPPAAL [14].
With this in mind, we seek to build models which
are both accurate enough so that we can be confi-
dent that the conclusions which we reach about a
model are valid for the corresponding implementa-
tion, but also abstract enough so that analysis of
the model is tractable. Our approach in this respect
builds upon [3]. The main idea is to build a model
which is a “conservative approximation” of an imple-
mentation. An abstract model of an implementation
is a conservative approrimation if every possible be-
haviour of the implementation is represented by some
behaviour of the model, i.e. the behaviours of the
implementation are a subset of the behaviours of the
model. A formal demonstration of this relationship
requires an approach such as that adopted in the
ProCos project [13] where a system is viewed as a
hierarchy of formally expressed semantic levels from



the abstract (requirements and system architecture)
to the concrete (switching circuits implemented in
CMOS), in which each level can be related formally
to its neighbours in the hierarchy. However, we are
interested in short to medium term approaches to
improving the quality of control systems developed
with mass produced components. The availability of
formal descriptions of such components is the excep-
tion rather than the rule. In which case, we proceed
by a careful, but necessarily informal, development
of conservative approximations, using data obtained
from a variety of sources, including code timing anal-
ysis [15], simple scheduling analysis [2] and commu-
nication protocol standards [11].

Given an abstract model which is a conservative
approximation of an implementation, we restrict at-
tention to requirements which are expressed as prop-
erties of all behaviours of the model. In this case,
it is sufficient to establish that the model satisfies a
requirement in order to conclude that the implemen-
tation also satisfies the requirement. This approach
is similar in some respects to the timing analysis of
Ada programs undertaken by Corbett [4]. However,
the work described there is restricted to single pro-
cessor systems, whereas we are concerned primarily
with distributed systems.

2 Informal control system model

Figure 1 shows a typical organisation for the class of
control systems to be studied. Control is distributed
over a number of tasks which are statically allocated
to computing nodes. A computing node consists of at
least a processing unit, which has access to some lo-
cal memory, one or more communication controllers
and a programmable timer. Tasks communicate by
using one or more communication channels (buses) to
send and receive broadcast messages. Each commu-
nication controller in a computing node is responsible
for the node’s access to a single channel. If a node
communicates using more than one channel then it
needs a communication controller for each channel
that it uses. A number of tasks may be allocated to
a single node and will share the processing unit using
some fixed scheduling policy. In order to simplify the
model and to facilitate system reorganization, we as-
sume that all tasks communicate using (logically) a
single mechanism, whether they share a computing
node or not. So even tasks which share a proces-
sor, communicate by passing messages and do not
have unconstrained access to shared memory. In ad-
dition, each computing node may have access to a
number of sensors and actuators which form part of
the interface to the controlled system. In the case of
multi-tasking, it is assumed that sensors and actu-
ators are not shared but that each is accessed by a
single task.

We have targetted our development approach at a
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Figure 1: Control system model

specific communication network, namely Controller
Area Network (CAN). CAN uses a simple, deter-
ministic, broadcast communication protocol which
makes it not only attractive to developers but also
amenable to formal modelling and analysis. It is
gaining increasing importance and attention in the
implementation of distributed real-time systems [11].

3 Distributed Robot Controller

We illustrate the construction of a timed transition
model for a CAN-based system using the example
of a distributed robot controller which has been dis-
cussed in [4, 10, 7]. Although only a simple system,
this example allows the demonstration of nearly all
features of CANDLE including its languages and ap-
proach to development and verification.

The system requires commands to be commu-
nicated to a robot from time to time. Each com-
mand is computed based upon the readings deliv-
ered by two sensors. We assume an implementation
which uses three distributed tasks executing in par-
allel and communicating via a CAN. The tasks in-
teract with the robot using a pair of sensors and a
single actuator. There is a task responsible for read-
ing each of the sensors and a further task to inte-
grate the readings and send a command to the robot.
The interaction with sensors and actuators is mod-
elled and implemented by simple sequential oper-
ations (Sensorl.ReadSensor, Integrator.Signal
etc.). In general, it is assumed that sensors and ac-
tuators are not shared but that each is controlled
directly by a single task; other tasks which desire
access to a sensor/actuator must communicate their
intentions to the controlling task by sending a CAN
message.

The main requirement of the system is that the
command which is sent to the robot must be based
upon readings received from each of the sensors with
a maximum separation between the times of the
readings. It is the job of the Integrator task to receive
the sensor readings, compute a command and send
a signal to the robot. It should be able to receive
readings from the two sensors in either order. In or-
der to satisfy the maximum separation requirement,



following the receipt of the first sensor reading, the
Integrator task waits for only a bounded length of
time for the second reading to arrive. Figure 2 uses
CANDLE to describe the main details of implemen-
tations of one of the sensor tasks and the integrator
task. The implementation of the other sensor task is
similar to the one described.

The sensor tasks are activated periodically. At
regular intervals, they take a sensor reading and
broadcast it until an acknowledgement is received.
This ensures that a fresh sensor reading is available
to the Integrator task.

The integrator task repeatedly waits to receive
a reading from either sensor and then waits for a
limited period for the other sensor reading. If this
reading arrives in time, the task uses both readings
to compute a command which it then signals to the
robot; otherwise the task tries again to receive both
readings within the maximum separation distance.

Data clauses in CANDLE (such as with data
Integrator) establish a link to data specifications
and implementations which are constructed using a
suitable external language: we currently use B for
specification and C for implementation. Data ab-
straction and the extraction of state transformers
from specifications is performed ‘by hand’; we are
investigating the use of PVS to support this pro-
cess. Bounds upon the performance of data opera-
tions are obtained by using the C code timing tool,
CINDERELLA [15] in conjunction with a simple multi-
tasking scheduling analysis as described in [2].

A system description in CANDLE is used as the
primary source both for the generation of system
code and for the generation of a model for simu-

lation and verification, in keeping with the spirit of
WYVIWYE!.

4 Constructing a timed transition
model

A CANDLE system description must be translated
into bBCANDLE before its behaviour can be simu-
lated or verified. We use the distributed robot con-
troller example to introduce informally the transla-
tion and to illustrate salient points.

A bCANDLE model represents the state and be-
haviour of tasks and network channels. The be-
haviour of the model follows a two phase pattern, as
discussed in [9], in which instantaneous action transi-
tions are interspersed with time transitions in which
time advances in all components. The model is con-
structed from a number of development files which
are described in table 1. The construction arises nat-

IWhat You Verify Is What You Execute

system DRC is
Sensorl | Sensor2 | Integrator
where
visible
Sensorl.ReadSensor, Sensor2.ReadSensor,
Integrator.Signal

network is
channel is <ackl, ack2, sensorl, sensor2>
end_network

task Sensorl with data Sensorl
using
constant SENSOR1_PERIOD, SENSOR1_EXPIRE
var val
op ReadSensor
is
every SENSOR1_PERIOD do
loop DELIVER do
ReadSensor; snd(sensorl,val);
select
when rcv(ackl) do exit DELIVER
or
when elapse SENSOR1_EXPIRE do skip
end_select
end_loop DELIVER
end_every
end_task

/* task Sensor2 ... similar to Sensorl */

task Integrator with data Integrator
using

constant PROXIMITY_MAX

var svl, sv2

op Compute, Signal

is
loop do
loop GATHER do
select
when rcv(sensorl,svl) do
select
when rcv(sensor2,sv2) do
snd(ackl); snd(ack2); exit GATHER
or
when elapse PROXIMITY_MAX do skip
end_select
or
when rcv(sensor2,sv2) do
select
when rcv(sensorl,svl) do
snd(ackl); snd(ack2); exit GATHER
or
when elapse PROXIMITY_MAX do skip
end_select
end_select;
end_loop GATHER
Compute;
Signal
end_loop
end_task

end_system

Figure 2: CANDLE system file for distributed robot
controller
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Figure 3: Architecture of the CANDLE development

. ¢ Gather =
environmen [pre_select2] ;
(k?sensorl._;

urally from the use of the development environment [post_rcvl; [pre_select3];

hown in figure 3 (k?sensor2._;
s g : [post_rcv]; [pre_snd]; k'!ackl._; [post_snd];

. . . [pre_snd]l; k'ack2._; [post_snd];

‘ Figure 4 gives the bLCANDLE mgdel for the‘ dis- [PRE_EXIT_ GATHER] : idle
tributed robot controller. It comprises 3 sections, +
defining the behaviour of system tasks, network pa- [approx_PROXIMITY_MAX];
rameters and initial data state. Task behaviour is [post_timer]
defined in a number of possibly recursive equations )
using a simple process language which is summarised +
in table 2. k?sensor2._;

[post_rcv]; [pre_select4d];
The construction of the model is based mainly (k?sensorl._;
upon the system description (.can file) but, as with [post_rcvl; [pre_snd]; k'ackl._; [post_snd];
the construction of the network model, it relies upon [pre_snd]; klack2._; [post_sndl;
information derived from a number of other sources. [PRE_EXIT_GATHER]; idle
The code for each sequential operation is analysed to
determine the bounds (i.e. the estimated best case

+
[approx_PROXIMITY_MAX];
[post_timer]

and worst case execution times) on its execution. It )
is necessary to know the architecture of the node on );
which the task is to be executed in order to perform [jumpl; Gather
the analysis. In the case of a multi-tasking node,
the execution time bounds must be converted into network
response time bounds. This analysis is possible for /* pi dlb dub d1B duB */
a simple time-slicing scheduler [2]. In figure 4, every k = (ackl: 1, 37, 47, 10, 12;
ack2: 2, 37, 47, 10, 12;

use of [...] represents a computation whose time
bounds, denoted by the enclosed symbolic name, are
the bounds on the response time for the correspond-

sensorl: 3, 43, 53, 10, 12;
sensor2: 4, 43, 53, 10, 12)

ing operation. So, for example, [Compute] repre- data
sents a computation whose bounds are the calculated =@
response time bounds for the operation Compute. __exit_DELIVER = false

__exit_GATHER = false
Each communication, snd(id,x) or rcv(id,x),

requires some computation time both before and af- ) o
ter it (to allow for delays caused by configuring a Figure 4: bCANDLE model of Distributed Robot

Controller



.ds Specification files for the data state and
sequential operations of of each system
task. Model-based specification lan-
guages such as B, Z or VDM can be
used. Specifications are used to de-
velop sequential code following a stan-
dard methodology and are also used to
develop abstract data specifications for
system verification.

.can | CANDLE system file: contains a de-
scription of the dynamic behaviour
of tasks including communication and
synchronisation.  Declares broadcast
channels, including message identifiers
and their priorities.

.sa System architecture file: maps tasks to
processors, communication channels to
CAN buses, CANDLE data to specifi-
cations and implementations, etc.

.cd Component description files: describes
the properties of system components,
e.g. processors, CAN buses and clocks
in order to allow the prediction of tim-
ing properties.

.c, .o | C source and object files developed
from data specification using a stan-
dard development methodology.

.bc bCANDLE file: low-level system model
with formal timed transition seman-
tics. Generated automatically from in-
put files.

.tr Trace file which is either output by the
simulator as a history of a simulation
run or which can be used as input to the
simulator to guide a simulation session.
.tg Timed graph file: suitable for input to
external model checkers such as KRO-
NOS and UPPAAL.

.ts Temporal specification file: a specifica-
tion of temporal system properties ei-
ther using a logic (such as TCTL [1])
acceptable to model checker or given by
a description of a specification automa-
ton.

Table 1: CANDLE development files

communication controller or handling an interrupt,
for example). Let [pre_snd], [post_snd] repre-
sent the bounds on the before and after delays for a
snd, and [pre_rcv], [post_rcv] the correspond-
ing delays for rcv. The calculation of these bounds
requires knowledge of the kernel implementation and
the hardware platform.

The modelling of timer services (whose use is im-
plied by the periodic behaviour of ReadSensor re-
quires similar information regarding their low-level
implementation. We use [pre_timer], [approx
Time] and [post_timer] to denote the bounds on

kli.x Enqueue a message with identi-
fier i and value given by x for
transmission on channel k. Non-
blocking.

k?7i.x Await a message with identifier i
on channel k, store the transmit-
ted value in x. Blocking.
[Op:t1,t2] | Transform the data state accord-
ing to operation Op within the
bounds given by t1 and t2.
p—>T Evaluate the predicate p in the
current data state, if true then be-
have as T, otherwise idle.
Sequential composition: behave as
T1 then T2.

Choice: choose whichever branch
has a possible action transition.
Network and time transitions do
not resolve choice.

Interrupt: behave as T1 until T2
can make an action transition,
then behave as T2. If T1 termi-
nates then T1 [> T2 terminates.
Parallel composition: asyn-
chronous interleaving of action
transitions.  Synchronous time
steps.

T1 ; T2

T1 + T2

T1 [> T2

T1 | T2

Table 2: bCANDLE language summary

the set up time, resolution and recovery time, respec-
tively, given by a request for a delay of Time time
units.

[jump] denotes the bounds required for the exe-
cution of a jump instruction.

5 Conclusions and Further Work

This paper describes work which has been under-
taken as part of an ongoing project to provide a
tool-supported engineering environment for the de-
velopment of distributed embedded control systems.
The importance of quantitative timing analysis of
such systems has been recognised for some time.
Quantitative timing properties of systems depend
directly upon their implementations. We aim to
build systems in such a way that it is possible to
extract abstract models which are conservative ap-
proximations of their implementations. These mod-
els are amenable to a variety of well-developed, tool-
supported analysis techniques [9, 5, 14].

We believe that CAN will be an important com-
ponent in many small/medium scale embedded con-
trol systems, because of its properties of robustness
and predictability. The approach taken by CANDLE
is intended to improve the quality of CAN control
systems by enabling a straight forward construction
of tractable system models.



The major obstacle, as always, remains the man-
agement of the state explosion problem. We are cur-
rently seeking to apply symbolic and partial order
techniques to the simplification of our system mod-
els.

A constraint on the class of systems to which our
approach is applicable arises from the fact that our
implementation of multi-tasking is currently limited
to preemptive time-sliced scheduling, which allows
an independent analysis to calculate the WCRT of
all computations. Clearly there are some systems
for which this may make it difficult occasionally to
achieve the responsiveness that is required by some
tasks; however, there are many for which this ap-
proach to scheduling is adequate. Future work will
examine the extension of our model to accomodate
fixed priority preemptive scheduling. Such an exten-
sion is possible but leads to harder model-checking
and may constrain further the size of systems which
can be analysed automatically. As usual, there is a
trade-off to be made between the simplicity of the
analysis and the sophistication of the implementa-
tion.

An essential requirement to allow the develop-
ment and analysis of large-scale applications is for
modular design, implementation and verification.
CANDLE, in its full form, permits the composition
of system descriptions, allowing channel sharing and
the renaming of message identifiers where necessary.
Inevitably, however, in general, composition does not
preserve all system properties when the composed
systems broadcast on a shared channel. We are cur-
rently investigating the use of rely-guarantee reason-
ing to allow the verification of some properties of
compound systems based only on the construction
and analysis of models of the components.

Finally, we wish to investigate to what extent it
is possible and useful to develop an extended system
model to reason about behaviour in the presence of
network errors.
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