
bCANDLE: Formal Modelling and Analysis of CAN Control Systems

D.Kendall S.P.Bradley W.D.Henderson
A.P.Robson

Department of Computing, University of Northumbria at Newcastle
Ellison Place, Newcastle upon Tyne, NE1 8ST

david.kendall@unn.ac.uk

Abstract

Embedded control systems appear in many of the manu-
factured products upon which our society increasingly de-
pends. System developers need better development meth-
ods in order to be more confident that the systems which
they deliver will behave properly. The need is particularly
pressing in the case of distributed, hard real-time control
systems for which testing is notoriously difficult. In recent
years, much research has been conducted into formal tech-
niques for analysing the quantitative temporal properties of
system models. Such work offers the promise of comple-
menting testing in the validation of systems by approaches
which include simulation, symbolic monitoring, assertion
checking and verfication.

The principal contribution of this paper is the introduc-
tion of a modelling language,bCANDLE, whose intended
domain comprises embedded control systems in which com-
puting nodes communicate using one or more Controller
Area Networks (CAN).bCANDLE is a simple but expres-
sive language which includes value passing broadcast com-
munication, message priorities and an explicit time con-
struct. In giving a formal semantics tobCANDLE in terms
of timed transition systems, we present for the first time an
abstract, timed formal model of CAN.

1. Introduction

This paper introducesbCANDLE, a language for the
modelling and analysis of distributed, real-time control sys-
tems which communicate using the deterministic broad-
cast communication protocol, CAN [9].bCANDLE (pro-
nounced ‘basic candle’) is a simple but expressive process
language with a value-passing, broadcast communication
primitive, message priorities and an explicit time construct.
The language is given a formal semantics in terms of timed
transition systems [8].

Broadcast communication is used frequently in the im-
plementation of embedded systems, but has received com-
paratively little attention from the formal methods commu-
nity in contrast to point-to-point synchronous communica-
tion. Timed transition systems have proved to be very suc-
cessful models for the analysis of real-time systems [8] and
they arise naturally from a variety of formalisms for system
description, see for example [1, 6]. However, the construc-
tion of a timed transition model of a broadcasting embed-
ded control system poses a number of problems: for ex-
ample, timed automata are too low-level to allow a man-
ageable description of realistic systems; other formalisms,
with a point-to-point, synchronous communication primi-
tive, such as ET-LOTOS, are not convenient for the descrip-
tion of broadcasting systems (see [12] for a convincing jus-
tification of this point of view); yet other formalisms which
do adopt a broadcast communication primitive, such as Es-
terel [2], assume the viability of the synchrony hypothesis
which is not sustainable for distributed systems. Therefore,
we have been motivated to develop an approach to the de-
scription of broadcasting systems which adopts a broadcast
mechanism as its communication primitive, with the inten-
tion of making recent progress in real-time systems analysis
as accessible to developers of these systems as it is to others.

We wish to promote the production of formal system
models which arise almost as a by-product of a ‘natural’
development process. In this respect, the approach is simi-
lar to [3]and [7]. A model is intended to be a conservative
approximation of its associated implementation, i.e. the be-
haviours of the implementation should be a subset of the
behaviours of the model. Given such a conservative approx-
imation, by restricting attention to requirements which are
expressed as properties ofall behaviours of the model, it is
sufficient to establish that the model satisfies a requirement
in order to conclude that the implementation also satisfies
the requirement. This approach is similar in some respects
to the timing analysis of Ada programs undertaken by Cor-
bett [5]. However, the work described there is restricted
to single processor systems, whereas we are concerned pri-

CPU/Memory

Comms

Controller

Timer

Computing

Node

Sensors/

Actuators

Bus

Figure 1. Control system model

marily with distributed systems.

2. Informal control system model

Figure 1 shows a typical organisation for the class of
control systems to be studied. Control is distributed over
a number oftaskswhich are statically allocated to comput-
ing nodes. Several tasks may be allocated to a single node
and share the processing unit using some fixed scheduling
policy. Tasks communicate by using one or more communi-
cation channels (buses) to send and receive broadcast mes-
sages. Access to each channel is mediated by a dedicated
communication controller. This is the only (logical) mecha-
nism for communication between tasks. Tasks do not share
memory. In addition, each computing node may have ac-
cess to a number of sensors and actuators which form part
of the interface to the controlled system. In the case of
multi-tasking, it is assumed that sensors and actuators are
not shared but that each is accessed by a single task.

3. Formal Preliminaries

3.1. Introduction

The formalization of the class of models described in
section 2 is undertaken by the definition of the mod-
elling language,bCANDLE. A bCANDLE model inte-
grates models of the structure and behaviour of tasks, of the
network, and of the global data environment (see [10] for a
similar approach). The semantics of abCANDLE model is
given as a timed transition system as described in the fol-
lowing sections.

3.2. Time domain

We use a dense time domain,R, which we take to be the
non-negative reals. It is convenient to augment the time do-
main with a value,1, which is defined to be strictly greater
than any other time value. We writeR1 for R [f1g and

assume that the arithmetic operators and relations are ex-
tended toR1 in the usual way: for everyt 2 R, t < 1;
and for everyt 2 R1 , t + 1 = 1 + t = 1. We also
define a subtraction operation,� : R1 � R ! R1 , such
that t1 � t2 = t wheret1 = t2 + t, if t1 > t2 and t = 0
otherwise.

4. Modelling the data environment

It is common to omit the data environment from sys-
tem models whose purpose is the analysis of concurrent and
real-time properties. This leads to smaller models which are
consequently easier to analyse. However, the behaviour of
real systems is influenced by their data and we need to be
able to reason about these effects. Therefore we include a
model of (at least part of) the data environment in our initial
system models and choose appropriate abstractions later in
the analysis when it becomes clearer which, if any, proper-
ties of the data environment are relevant to the system prop-
erties of interest.

Definition 1 (Data Environment) Let Var be a finite set
of variable names,V a finite set of data values,
 a fi-
nite set of operation names and� a finite set of predi-
cate names. Adata environmentover Var;V;
 and� is
a mappingD : Var ! V with the following operations:
a lookup operationD:x, which for any variablex 2 Var
denotes the value ofx in the mapD; an update operation
D[x := v], which denotes a data environmentD0, which is
the same asD except that the variablex is associated with
the valuev in D0; a binary relation

!=), for each opera-
tion symbol! 2
, such thatD

!=) D0 iff the operation
associated with! can be executed inD producing a new
stateD0. We use the operation labelID to represent the
operation which leaves every data environment unchanged:8D;D0 � D

ID=) D0 , D = D0. We also define a bi-
nary relation,j=, such that for any predicate symbol
 2 �,
D j=
 iff the predicate associated with
 is satisfied in
D. We writeD 6j=
 for : (D j=
). We assume the exis-
tence of distinguished predicate symbolstrue andfalse,
such that8D � D j= true and 8D � D 6j= false.
We use data operations not only to model changes of in-
ternal state but also to model interaction with the exter-
nal environment. So it is convenient to be able to distin-
guish independent operations from operations which syn-
chronise with the environment. To do so, we define a func-
tion,�:
 !
 [f�g such that for all! 2
 either�! = !
or �! = � where� =2
 represents an independent operation.�

5. Modelling the Network

Definition 2 (Channel) Let I be a finite set of message
identifiers andV a finite set of data values. Achannel
c = (M;�; �; q; s) overI ;V, is a tuple where� M � I � V is the set of messages which can be trans-

mitted on the channel. We use the notationi:v = m,
where i 2 I and v 2 V, to decompose a message
m2 M.� The relation� : M $ M is a total, reflexive, transitive
ordering on the channel’s messages, which gives the
priority at which they are transmitted. For messages
m1;m2 2 M, m1 � m2 iff the priority of m1 is at least
as high as the priority ofm2. We write m1 � m2 if
m1 � m2 and m2 6� m1. If m1 � m2, m1 will be
transmitted beforem2, in the event that both messages
simultaneously contend for transmission on their chan-
nel. If two messages of the same priority seek trans-
mission simultaneously1, an arbitrary choice is made
as to which is transmitted first.� � is a collection of functions�lb ; �ub; �lB ; �uB : M !R1 which give the lower and upper bounds on
the duration of the pre- and post-acceptance phases
for the transmission of a message on the channel.2

We write lb (resp. ub; lB; uB) for �lb(m) (resp.�ub(m); �lB(m); �uB(m)) whenm is clear from the con-
text.� q is a priority ordered queue of messages which are
pending transmission on the channel. An empty queue
is denotedhi. A queue with highest priority messagem
and remaining messagesq is writtenm:q. An insertion
operator": seqM � M ! seqM, which preserves
only the most recently inserted message with a given
identifier, is defined3

q" i:v = 8>>><>>>:hi:vi ; q = hi
i:v:q0 ; q = i: :q0
i:v:m:q0 ; q = m:q0; i:v� m

m:(q0 " i:v) ; q = m:q0; m� i:v� s represents the current status of the channel. A chan-
nel is eitherfree or is transmitting a message. The
transmission of a messagem 2 M requires some time(> 0) to complete (i.e.�lb(m) + �lB(m) > 0, for all

1This should not occur in practice. If it does, it probably indicates an
error condition which should be detected and corrected.

2Pre- and post-acceptance phases of message transmission are ex-
plained below in the discussion of channel status.

3In this and subsequent sections, we make use ofto denote an arbi-
trary value taken from whatever set of values is appropriatein its context.

Notation Channel Status# free[l;u];m pre-acceptance phase of transmission of
messagem with bounds[l; u] on time to
completion,0 � l � lb, 0 � u� ub"m acceptance point in transmission ofm[l;u]; post-acceptance phase of message trans-
mission with bounds[l; u] on time to com-
pletion,0 � l � lB, 0 � u� uB

Figure 2. Channel Status Notation: (m 2 M
and l; u 2 R1)

m 2 M). The key instant during transmission is the
acceptancepoint form, by which time, listeners to the
channel which intend to acceptm, must have indicated
that intention;m will not be accessible to any listeners
which have not indicated their intention to accept it by
that time. The acceptance point is preceded (resp. suc-
ceeded) by apre-acceptance(resp. post-acceptance)
phase of a transmission. The pre-acceptance phase ex-
tends from the start of transmission to the acceptance
point. The post-acceptance phase extends from the ac-
ceptance point to the first instant at which the channel
next becomes free. During each of these phases, time
can progress within the limits given by the bounds on
the duration of the phase. We use the notation shown
in figure 2 to denote the status of a channel.

For a channelc = (M;�; �; q; s), we define the sets
idsc = fi 2 I j 9 v : V � i:v 2 Mg, valuesc =fv 2 V j 9 i : I � i:v 2 Mg, andchannelsc = f(M;�; �; q0; s0) j q0 2 seqM ands0 is a possible status ofcg�
5.1. Channel Behaviour

The behaviours of a channelc = (M;�; �; q; s) are given
by the timed transition system(S; L; c;�!C) where: S =
channelsc is the set of states;L = f�g [f(t) j t 2 Rg
is the set of labels in which� indicates an internal channel
transition and(t) indicates a time transition of durationt;
c 2 S is the initial state; and�!C � S� L� S is the least
relation closed under the rules of figure 3.

Definition 3 (Network) Let K be a finite set of channel
identifiers. Anetwork NoverK is an indexed set of chan-
nels,N = ((M;�; �; q; s)k j k 2 K). For anyk 2 K, we
denote the channel indexed byk asNk.

If N is a network overK, we can further distinguish
N by saying thatN is a network overK; I ;V, whereI =

(m:q; #) ��!C(q; [lb;ub]; m) (q; [0;]; m) ��!C(q; "m)(q; "m) ��!C(q; [lB;uB];) (q; [0;];) ��!C(q; #)(hi; #) (t)�!C(hi; #) 0 < t(q; [l;u];m) (t)�!C(q; [l�t;u�t]; m) 0 < t � u(q; [l;u];) (t)�!C(q; [l�t;u�t];) 0 < t � u

Figure 3. Channel Transitions: The transition
rules show only the dynamiccomponents of a
channel (i.e. the pending message queue and
channel status). The presence of the static
components (M;� and �) is to be assumed
throughout. t 2 R and l; u 2 R1 .S

k2K idsNk andV = Sk2K valuesNk .
Let K be a set of channel identifiers,N a network over

K, k 2 K, c = Nk and c0 2 channelsc. The opera-
tion N � c0k is defined: N � c0k = N n fckg [fc0kg.�
5.2. Network Behaviour

Let K be a set of channel identifiers andN a network
overK. A channelc = Nk can act independently, by per-
forming any channel transition of which it is capable, to
becomec0, giving a new networkN0 in whichck is replaced
by c0k. By contrast, in order forN to perform a time tran-
sition,all channels inN must be capable of performing the
transition together. Figure 4 gives transition rules which al-
low the extension of the communication model to a network
of channels.

6. Modelling Task Behaviour

We use a simple process language to describe the be-
haviour of tasks. In choosing the operators of the language,
we have been concerned to identify a small set which allows
us to express naturally the behavioural models in which we
are interested, while allowing the definition of a timed tran-
sition semantics in a direct manner.

Nk
��!Cc

N
��!NN� ck8 k 2 K � Nk

(t)�!C
N

(t)�!Nfck j k 2 K ^ Nk
(t)�!Ccg

Figure 4. Network Transitions

6.1. Syntax

Given finite setsK of channel identifiers,I of message
identifiers, Var of data variables,
 of operation names
and� of predicate names, the set of process terms over
K; I ;Var;
 and� is given by the grammar:
P ::= k!i:x j k?i:x j [! : t1; t2] j
 -> P j
P ; Q j P+ Q j P [> Q j P j Q j recX:P j X where
k 2 K, i 2 I , x 2 Var, ! 2
,
 2 �. P andQ are pro-
cess terms,X is a process variable andt1; t2 2 R1 . These
terms representbasic processeswhich: enqueue a message
for transmission on a channel, accept a message from a
channel, perform a computation within a bounded period of
time, and evaluate a guard on the data environment; and,
compound processesformed by: sequential composition,
choice, interrupt, and parallel composition. The operators
bind from tightest to loosest according to the precedence
ordering:;, ->, +, [>, |.

Repetitive behaviour is modelled by recursion:recX:P.
The free variables of a term are those which are not bound
by some recursion. Closed terms are terms without free
variables. We denote byProcSys the set of closed terms
which do not violate restrictions on the use of recursion:
in particular, all use of recursion must be guarded by some
non-zero time delay; parallel composition is not allowed in-
side recursion; and a free process variable must not appear
in a sub-expression which constitutes the left operand of an
interrupt operator. These restrictions ensure that our mod-
els enjoy the properties of finite variability, finite control
and representability using a finite number of clocks (see [8]
for an explanation of the importance of these properties to
verification).

We use a number of syntactic abbreviations:[t1] � [ID :
t1], [! : t1] � [! : t1; t1], [t1; t2] � [ID : t1; t2], skip � [0],
andidle � false -> skip.

We also make use of equational definitions, exploiting
the property that processes defined using a set of simulta-
neous equations have an equivalent description entirely in
terms of the recursion operator.

Snd.1 (k!i:x;N;D) ��!(X;N� (q" i:v; s)k;D) Nk = (q; s) ^
v = D:x

Snd.2
N

��!NN0(k!i:x;N;D) ��!(k!i:x;N0;D)
Rcv.1 (k?i:x;N;D) ��!(X;N;D[x := v]) Nk = (; " i:v)

Rcv.2
N

�NT�!NN0(k?i:x;N;D) �NT�!(k?i:x;N0;D) Nk 6= (; " i:) _ Nk = N0
k

Comp.1 ([! : 0;];N;D) �!�!(X;N;D0) D
!=) D0

Comp.2
N

��!NN0([! : t1; t2];N;D) ��!([! : t1; t2];N0;D)
Comp.3

N
(t)�!NN0([! : t1; t2];N;D) (t)�!([! : t1 � t; t2 � t];N0;D) t � t2

Figure 5. Basic Processes: Communication
and Computation

6.2. Semantics

Let K; I ;Var;V;
 and � be as described above, with
K0 � K, I 0 � I , Var0 � Var, V0 � V,
0 �
 and�0 � �. The set ofbCANDLE control systems,SysbCAN
over K; I ;Var;V;
 and�, is the set of triples(P;N;D),
whereP is a process term overK0; I 0;Var0;
0;�0; N is a
network overK; I ;V0; and D is a data environment over
Var;V;
;�.

The semantics of a control system,(P;N;D), is given as
the set of timed computations of the timed transition system(�; �I ;L;�!) where� � � SysbCAN , is the set of states of the system.� The initial state,�I , is (P;N;D) where it is required

that for all(M;�; �; q; s)k 2 N, q = hi ands=#.� L =
 [f�; �g [f(t) j t 2 Rg is the set of transition
labels where� denotes an internal transition initiated
by a task and� an internal transition initiated by the
network.� �! � (��L��) is the least relation which is closed
under the structured operational rules of figures 5,6,7
and 8.

The operational rules make use of generic labels�P; �NT

and � which range over the setsf�g [
, f�g [f(t) j

Gu.1 (
 -> P;N;D) ��!(P;N;D) D j=

Gu.2

N
�NT�!NN0(
 -> P;N;D) �NT�!(
 -> P;N0;D) D 6j=

Seq
(P;N;D) ��!(P0;N0;D0)(P ; Q;N;D) ��!(P0 ; Q;N0;D0)

Ch.1
(P;N;D) �P�!(P0;N0;D0)(P+ Q;N;D) �P�!(P0;N0;D0)

Ch.2
(Q;N;D) �P�!(Q0;N0;D0)(P+ Q;N;D) �P�!(Q0;N0;D0)

Int.1
(P;N;D) �P�!(P0;N0;D0)(P [> Q;N;D) �P�!(P0 [> Q;N0;D0)

Int.2
(Q;N;D) �P�!(Q0;N0;D0)(P [> Q;N;D) �P�!(Q0;N0;D0)

Par.1
(P;N;D) �P�!(P0;N0;D0)(P j Q;N;D) �P�!(P0 j Q;N0;D0)

Par.2
(Q;N;D) �P�!(Q0;N0;D0)(P j Q;N;D) �P�!(P j Q0;N0;D0)

Figure 6. Compound Processes(P;N;D) �NT�!(P0;N0;D) (Q;N;D) �NT�!(Q0;N0;D)(P � Q;N;D) �NT�!(P0 � Q0;N0;D)
Figure 7. Network and Time Transitions – (�2f+; [>; jg)

Rec
(P[recX:P=X];N;D) ��!(P0;N0;D0)(recX:P;N;D) ��!(P0;N0;D0)

Def
(P;N;D) ��!(P0;N0;D0)(X;N;D) ��!(P0;N0;D0) X b= P

Figure 8. Recursion and Equational Definition

Term SubstituteX idleX ; P PX j P or P jX PX [> P X
Figure 9. Termination substitutions

t 2 Rg andL, respectively.;t ranges overR and t1; t2
range overR1 . We make use of a distinguished pro-
cess name,X, which indicates termination. It is used
only in giving the semantics and is not available to a
user of the language. In applying the operational rules,X is eliminated from a derived system description by
rewriting the process term in which it occurs using the
substitutions given in figure 9; the substitution rules are
applied until all occurrences ofX are eliminated from
the derived term. For example, assumeD

!=) D0,then([! : 0; 3] ; idle;N;D) �!�!(X ; idle;N;D0)(by Seq and
Comp.1), which, by the substitutions of figure 9 becomes(idle;N;D0), as expected.

7. Example: Manufacturing Production Cell

We illustrate the use ofbCANDLE for the construction
of a timed transition model of a CAN-based system, using
the example of a simple manufacturing production cell [4].
Figure 10 is a graphical representation of the system. A
production process, outside the cell, continually deposits
items at position 1 of the producer conveyor belt. The
producer belt controller drives the belt to move items from
position 1 to position 2. The robot controller captures
each item at position 2, rotates and processes the item.
After processing, the robot rotates again and attempts to
deposit the item on the consumer conveyor belt at position
3. The consumer belt controller operates the belt to move
items from position 3 to position 4 where they are removed
by some external consumption process. We assume an
implementation of the manufacturing cell which uses three
distributed tasks executing in parallel and communicating
via a CAN (see figure 11). The tasks interact with the
environment using a variety of sensors and actuators.
Environmental interaction is modelled and implemented by
simple data operations (CheckPosition2, BeltOn,
DepositItem etc.) which are analysed indepen-
dently to obtain bounds on performance. The notation
[CheckPosition2] etc. is used throughout to abbrevi-
ate[CheckPosition2:t1,t2] wheret1 andt2 are
the lower and upper bounds, respectively, on the execution
time of the code which implementsCheckPosition2.
Other computations (e.g.[pre_timer], [jump] etc.)

Producer Belt

Position 3 Position 4

Consumer Belt

Position 1 Position 2

Robot

Figure 10. Simple Manufacturing Cell

leave the data environment unchanged and are assumed
to take some positive amount of time to execute. Each
task maintains a number of boolean variables (e.g.p1,
belton) to model the state of the external environ-
ment; these variables are updated by the execution of
one of the data operations (e.g.CheckPosition1,
BeltOff). The variable __exit_RELEASE
is updated by [PRE_EXIT_RELEASE] and
[POST_EXIT_RELEASE] and is tested by the pred-
icateexit_RELEASE. It allows the modelling of a simple
loop with an exit condition. Tasks communicate using a
single communication channel which carries two types
of message, position 2 and position 3 status messages,
distinguished by the message identifierspos2 andpos3.
The static attributes of the channel are given in the network
section of the system model. Initially, the channel queue is
assumed to be empty and the status to befree.

The timed transition semantics ofbCANDLE makes
available a wide variety of approaches to analysis of the
model. A simulator has been constructed which allows user
directed exploration of system behaviour. Translation of a
bCANDLE model to a timed automaton allows the use of
KRONOS [6] or UPPAAL [11] for more detailed investiga-
tion.

8. Conclusions

This paper describes work which has been undertaken as
part of an ongoing project to provide a tool-supported en-
gineering environment for the development of distributed
embedded control systems. We aim to build systems in
such a way that it is possible to extract abstract models
which preserve important features of the quantitative prop-
erties of their implementations.bCANDLE is an appro-
priate language for the expression of such models, which
are amenable to a variety of well-developed, tool-supported
analysis techniques [8, 6, 11]. We believe that CAN will
be an important component in many small/medium scale

PBelt | Robot | CBelt
where
PBelt =

[pre_timer] ;
([CheckPosition2];
[pre_snd]; k!pos2.p2; [post_snd];
[eval_guard1];
(guard1 -> [BeltOff] + not_guard1 -> [branch]);
[CheckPosition1];
[eval_guard2];
(guard2 -> [BeltOn] + not_guard2 -> [branch]);
idle) [>

[approx_PRODPERIOD]; [post_timer]; [jump]; PBelt

Robot =
[pre_rcv]; k?pos2.p2; [post_rcv];
[eval_guard3];
(guard3 ->
[CaptureProcessRotate];
(Release [> exit_RELEASE ->[POST_EXIT_RELEASE]);
[RotateC_180]

+ notguard3 -> [branch]); [jump]; Robot

Release =
[pre_rcv]; k?pos3.p3; [post_rcv];
[eval_guard4] ;
(guard4 -> [Deposit]; [PRE_EXIT_RELEASE]; idle
+ notguard4 -> [branch]);
[jump]; Release

CBelt =
[pre_timer];
([CheckPosition4]; [eval_guard5];
(guard5 -> [BeltOff] + notguard5 -> [branch]);
[CheckPosition3];
[pre_snd]; k!pos3.p3; [post_snd];
[eval_guard6];
(guard6 -> [BeltOn] + not_guard6 -> [branch]);
idle) [>
[approx_CONSPERIOD]; [post_timer]; [jump]; CBelt

/* Abbreviations
guard1 == PBelt.p2 and PBelt.belton
guard2 == PBelt.p1 and not (PBelt.p2 or PBelt.belton)
guard3 == Robot.p2 guard4 == not Robot.p3
guard5 == CBelt.p4 and CBelt.belton
guard6 == CBelt.p3 and not (CBelt.p4 or CBelt.belton)

not_guardn == not guardn
*/

network
/* pri dlb dub dlB duB */
k = (pos2: 1, 43, 53, 10, 12;

pos3: 2, 43, 53, 10, 12)

data
PBelt.p1 = false; PBelt.p2 = false;
Robot.p2 = false; Robot.p3 = false;
CBelt.p3 = false; CBelt.p4 = false;
PBelt.belton = false; CBelt.belton = false;
__exit_RELEASE = false

Figure 11. bCANDLE model of Manufacturing
Production Cell

embedded control systems, because of its properties of ro-
bustness and predictability. Therefore we have adopted an
approach which enables a straight forward construction of
tractable system models of CAN-based systems. The major
obstacle, as always, remains the management of the state
explosion problem. We are currently seeking to apply sym-
bolic and partial order techniques to the simplification of
our system models.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Automata for mod-
elling real-time systems. InProc. 17th ICALP, volume 443,
pages 322–335, 1990.

[2] G. Berry and G. Gonthier. The ESTEREL synchronous
programming language: design, semantics, implementation.
Science of Computer Programming, 19:87–152, 1992.

[3] S. Bradley, W. D. Henderson, D. Kendall, and A. P. Rob-
son. Designing and implementing correct real-time systems.
In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems
FTRTFT ’94, Lubeck, Lecture Notes in Computer Science
863, pages 228–246. Springer-Verlag, September 1994.

[4] M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw.
An approach to monitoring and assertion-checking of real-
time specifications. InProceedings of the 4th IEEE Work-
shop in Parallel and Distributed Real-time Systems, 1996.

[5] J. Corbett. Timing analysis of Ada tasking programs.IEEE
Transactions on Software Engineering, 22(7):461–483, July
1996.

[6] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS
programs with KRONOS. InProc. Int. Conf. on Formal
Description Techniques VII (FORTE’94), pages 227–242,
1994.

[7] R. Gerber and I. Lee. A layered approach to automating
the verification of real-time systems.IEEE Transactions on
Software Engineering, 18(9):768–784, September 1992.

[8] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems.Information
and Computation, 111(2):193–244, 1994.

[9] ISO/DIS 11898: Road Vehicles – interchange of digital in-
formation – Controller Area Network (CAN) for high speed
communication, 1992.

[10] Y. Kesten and A. Pnueli. Timed and hybrid statecharts and
their textual representation. In J. Vytopil, editor,Formal
Techniques in Real Time and Fault Tolerant Systems, volume
571 ofLecture Notes in Computer Science, pages 591–620.
Springer Verlag, January 1992.

[11] K. Larsen, P. Pettersson, and Wang Yi. UPPAAL in a Nut-
shell. Springer International Journal on Software Tools for
Technology Transfer, October 1997.

[12] K. Prasad. A calculus of broadcasting systems.Science of
Computer Programming, 25, 1995.

