A Formal Basis for Tool-supported Simulation and
Verification of Real-Time CAN Systems

D.Kendall, S.Bradley, W.D.Henderson, A.P.Robson

Abstract— In this paper, we present a framework for the
formal modelling of the temporal and functional behaviour
of real-time distributed systems which communicate using
one or more Controller Area Networks. A low-level mod-
elling language is introduced whose timed transition seman-
tics provides an abstract basis for the development of tools
to support the simulation of industrial-strength systems and
the verification of safety and liveness properties, including
bounded response properties. The implementation and ap-
plication of a simulator is described. We show how the inte-
grated analysis of network and process behaviour permits a
less pessimistic view to be taken of a wider range of system
properties than is allowed by traditional scheduling analysis.
The practical utility of the approach is emphasised and we
illustrate how it can be applied to complex systems using a
variety of CAN controllers and micro-controllers, including
the 82527 and the MC68376.

I. INTRODUCTION

Embedded control systems appear in many of the manu-
factured products upon which our society increasingly de-
pends. System developers need better development meth-
ods in order to be more confident that the systems which
they deliver will behave properly. The central problem, as
always, is to develop a ‘system’ to satisfy a given ‘speci-
fication’, taking all reasonable steps to demonstrate satis-
faction. Testing has, and will continue to have, a major
role to play in providing evidence of satisfaction. Post-hoc
testing of arbitrary systems on its own, however, should not
give developers great confidence in the continuing ‘good be-
haviour’ of their products; particularly when the product
is a distributed, hard real-time, embedded control system.
Simulation of a model of the system under development can
give early reassurance that the development is proceeding
along the right lines. Verification can provide even greater
confidence. Formal methods have been successfully applied
to the problem of verifying that abstract design models sat-
isfy formal specifications of both functional and temporal
properties. However, comparatively little work has sought
to apply these techniques to implementation models. The
state explosion problem is an effective deterrent. In this pa-
per, we describe a modelling language which can be used to
develop timed transition models of distributed control sys-
tems in which the processing elements communicate using
a deterministic broadcast bus. We apply this approach to
the industry standard Controller Area Network and show
how the modelling language can be used to facilitate an in-
tegrated investigation of the behaviour both of computing
tasks and of the network in CAN-based systems. The ex-

The authors are with the Department of Computing, Uni-
versity of Northumbria at Newcastle, Ellison Place, Newcastle
upon Tyne, NE1 8ST. Email:{david.kendall, steven.bradley,
william.henderson, adrian.robson}@unn.ac.uk

tent to which symbolic and modular verification techniques
can be applied to mitigate the effects of the state explosion
problem is an open question. Nevertheless, we have found
that the approach provides a good basis for simulation, ver-
ification and implementation, and thus leads to increased
confidence in the proper behaviour of systems.

The work described in this paper forms part of a pro-
gramme whose objective is to provide a framework for the
development of hard real-time distributed embedded sys-
tems, from requirements elicitation and validation to im-
plementation. Our approach is guided by several criteria:

o We would like to realize a method which can be applied
by system developers to problems of real interest. Applica-
tion of the method should lead to justifiably increased con-
fidence in the behaviour of delivered systems. Furthermore,
developers should be free to choose standard components
(hardware circuits, compilers, etc.) in the production of
their chosen solutions, with the restriction that their run-
time behaviour is predictable; in particular, it should be
possible to put bounds upon the time taken to complete
any run-time operation. Currently, this limits choice to
simple components, although recent advances in execution
time analysis are making it possible to reason about more
complicated features [17].

o It should be possible to verify formally models of low-
level implementations with respect to high-level specifica-
tions of requirements.

o We should be able to model and analyse both functional
and temporal properties of systems.

« We wish to relate well-developed, stable theory from all
phases of development — from requirements elicitation to
scheduling theory — in a coherent approach, supported at
each stage by appropriate software tools.

This paper introduces a framework which makes it pos-
sible to produce abstract models of distributed, real-time
control systems which communicate using a determinis-
tic broadcast communication protocol. Broadcast commu-
nication is used frequently in the implementation of dis-
tributed real-time systems, but has received comparatively
little attention from the formal methods community in con-
trast to point-to-point synchronous communication. In the
approach adopted here, we have attempted to maintain
a clear separation of concerns in considering various as-
pects of implementation, particularly communication, con-
currency, data and scheduling. This means that we can
experiment with a variety of design and implementation
techniques within the same overall framework.

The models which we produce are intended to allow the

application of automated analysis techniques in order to in-
vestigate system properties. To achieve this goal, we need
models which are accurate enough so that we can be con-
fident that the conclusions which we reach about a model
apply also to the implementation from which the model
was developed, but also abstract enough so that analysis of
the model is tractable. Our approach in this respect builds
upon [5]. We adopt the idea of a “conservative abstrac-
tion” from [10]. An abstract model of an implementation
is a conservative abstraction if every possible behaviour of
the implementation is represented by some behaviour of
the model. Although not desirable, a model may exhibit
behaviours which do not correspond to any possible be-
haviour of the implementation which it models, i.e. the
behaviours of the model are a superset of the behaviours of
the implementation. This allows some necessary freedom
in the development of an abstraction. By restricting at-
tention to requirements which are expressed as properties
of all behaviours, it is sufficient to establish that a model
satisfies some requirement in order to conclude that the
implementation from which the model was developed also
satisfies the requirement.

The paper is organised as follows: section II introduces
an informal system model; section III outlines properties of
a CAN implementation which are assumed in the ensuing
formal model. The low-level modelling language is intro-
duced in section IV. Section V describes a simple manu-
facturing cell which is used as an example in sections VI,
VII and VIII which discuss the construction of a low-level
model, its simulation and verification, respectively. Sec-
tion IX concludes and outlines our plans for further work.

II. INFORMAL CONTROL SYSTEM MODEL

We address a class of control systems (see figure 1) which
can be identified by a number of properties:

o Control is distributed over a number of tasks which are
statically allocated to computing nodes. A computing node
consists of at least a processing unit, which has access to
some local memory, one or more communication controllers
and a programmable timer.

o Tasks communicate by using one or more communication
channels (buses) to send and receive broadcast messages.
Each communication controller in a computing node is re-
sponsible for the node’s access to a single channel. If a
node communicates using more than one channel then it
needs a communication controller for each channel that it
uses.

o A number of tasks may be allocated to a single node and
will share the processing unit using some fixed scheduling
policy.

e In order to simplify the model and to facilitate system
reorganization, we assume that all tasks communicate us-
ing (logically) a single mechanism, whether they share a
computing node or not. So even tasks which share a pro-
cessor, communicate by passing messages and do not have
unconstrained access to shared memory.

$

N " Computing
Node
. Sensors/

Actuators

—— Bus

Fig. 1. Control system model

e In addition, each computing node may have access to a
number of sensors and actuators which form part of the
interface to the controlled system. In the case of multi-
tasking, it is assumed that sensors and actuators are not
shared but that each is accessed by a single task.

III. CONTROLLER AREA NETWORK

CAN uses a simple, deterministic, broadcast communi-
cation protocol which makes it not only attractive to devel-
opers but also amenable to formal modelling and analysis.
We assume that the basic principles of CAN are familiar
and state here only those assumptions and simplifications
which are relevant to what follows.

o A transmitting node attempts to transmit its highest pri-
ority message. (This requirement is satisfied trivially by
the use of TouCAN controllers, for example, but requires
more effort on the part of the programmer for a controller
such as the 82527.)

e The transmitter with the frame of highest priority gains
bus access without experiencing any delay due to any pos-
sible access conflict.

o A transmitting node which loses the arbitration recog-
nises this fact and behaves as a receiver of the frame from
that point on.

o A controller does not release the bus between transmis-
sions, i.e. it enters a frame for arbitration in every arbitra-
tion phase if it has a frame to transmit. So lower priority
frames cannot delay the transmission of pending frames of
higher priority by beginning transmission during a gap be-
tween frames. The standard [14] p.26 says, ’A frame which
is pending for transmission during the transmission of an-
other frame is started in the first bit following intermission
o It is guaranteed that a frame is “simultaneously” ac-
cepted either by all nodes which are configured to accept
it, or by none of them (assuming that nodes are operating
normally). There is no possibility of a “partially success-
ful” transmission.

o We assume that we can determine the point during the
transmission of a frame when a controller begins its accep-
tance test for the frame. In normal operation, a controller
which becomes configured to accept messages at any time
before it begins its acceptance test will accept all messages
which pass the test thereafter.

o We ignore the possibility of error and overload frames.

o We ignore the distinction between error-active and error-
passive nodes.

o We ignore the difference between the transmitter and the
receiver of a message in determining the point at which a
frame is valid (end of EOF for transmitter, end-of-EOF -
1 bit for receiver).

IV. LL: A LOW-LEVEL MODELLING LANGUAGE

The construction of an integrated model of a CAN-based
system requires the modelling of both the static and dy-
namic properties of tasks, network and data environment
in a single framework. This section introduces a low-level
modelling language, LL, which is designed for this purpose.

A. Modelling the data environment

There are many well-known specification languages (Z,
VDM and B, for example) which can be used to model data
states and the effects of sequential operations upon them.
Well defined programming languages are clearly suitable
also. We want to allow the developer as much freedom as
possible in their choice of approach. Whatever language is
used, LL requires only that the following can be defined:

o A mapping, D : Var + Value, from variables to values
which represents the data environment.

o A lookup operation D.z, which for any variable 2 denotes
its value in the map D.

o An update operation D[z := v], which denotes a data
environment D', which is the same as D except that z is
associated with v in D’.

« A binary relation ==, such that D == D' for each task
computation w, iff w can be executed in D producing a new
state D’. We use the operation label ID to represent the
operation which leaves every data environment unchanged.
VD,D'e D22 D' & D =D

e A binary relation, |= between data environments and
predicate symbols where for any D and any v, D = - iff the
predicate associated with v “holds” in D. We write D j= vy
for = (D [= 7). We assume the existence of distinguished
predicate symbols true and false, such that VD e D |= true
and VD e D [~ false.

B. Modelling the network

The model of the network should allow us to answer a
variety of questions for any given channel (CAN bus or
internal data path):

« What messages are currently pending transmission?

o Is the channel currently in use or can a node begin the
transmission of a new message?

e In the event that two or more nodes begin transmitting
simultaneously, which will win the arbitration and succeed
in transmitting its message?

o How long from the start of its transmission will it take
for a message to become available for acceptance?

o By what point must a node be configured for acceptance
of a message type in order to guarantee that it will acquire
the next such message?

In order to give an answer to such questions, the net-
work model must represent both the static and dynamic
properties of each channel. Static properties of a channel
are fixed throughout the execution of the system. They
comprise:

« the name of the channel;

o the set of message identifiers which can be transmitted
on the channel;

o a total ordering on the set of message identifiers accord-
ing to their priority (a message p, is of higher priority than
a message W, written p; T p,, if the message identifier of
f; is of higher priority than the message identifier of y,);

« a pair of functions 6}, and 8%, from messages to time
values, giving the lower and upper bounds on the time
taken from the start of a message transmission to the point
at which controllers begin their acceptance test for the mes-
sage (the pre-acceptance phase of transmission); and

e a pair of functions 6}, and &%, from messages to
time values, giving the lower and upper bounds on the
time taken from the start of the acceptance tests to the
channel becoming free for the next transmission (the post-
acceptance phase of transmission).

The dynamic properties of a channel change as the system
executes and are given by:

o the status of the channel (a channel is either free, in
a pre-acceptance phase of transmission, at an acceptance
point or in a post-acceptance phase of transmission);

« the priority-ordered queue of messages pending transmis-
sion on the channel.

The channels in a network can independently perform
any of the following actions (except Age Network),
changing thier dynamic properties accordingly:

Start Transmission When a channel is free, the highest
priority pending message begins transmission and is re-
moved from the pending message queue. If there are no
pending messages, the channel simply idles, allowing time
to pass.

Acceptance A channel which is transmitting a message,
allows time to pass at most up to the latest time at which
the controllers must begin their acceptance test for the mes-
sage. The acceptance test can not begin before its earliest
allowed time.

Finish Transmission When all properly configured nodes
have performed their acceptance test for the message, the
channel completes the transmission of any following bits in
the message frame, time passing as it does so.

Release Channel When enough time has elapsed to com-
plete the transmission of the message frame and to allow
for the intermission, the channel becomes free again for the
transmission of the next message.

Age Network Time can pass in a network only when it
can do so for all of its channels.

C. Modelling the behaviour of tasks

The behaviour of tasks is modelled using a simple process
language, given by the grammar:

P:i=klz| ko |[w:t,b]|y->P
| P; QIP+Q[P[>Q|P[Q
| recX.P|X

where k is a channel name, ¢ is a message identifier, z is
a data variable, w is a data operation, ti,t; € Time,, are
time values, v is a predicate symbol, P, () are process terms
and X is a process variable. These terms represent basic
processes which:

o enqueue a message for transmission on a channel,
e accept a message from a channel,

o perform a computation, and

« evaluate a guard;

and compound processes formed by:

¢ sequential composition,
o choice,

e interrupt, and

¢ parallel composition.

The operators bind from tightest to loosest according to
the precedence ordering: ;, ->, +, [>, |.

Repetitive behaviour is modelled by recursion: rec X.P.
The free variables of a term are those which are not bound
by some recursion. The closed terms are those terms with-
out free variables. We denote by Procsys the set of closed
terms which do not violate restrictions on the use of re-
cursion: in particular, parallel composition is not allowed
inside recursion and all use of recursion must be guarded
by some non-zero time delay.

We use a number of syntactic abbreviations:
[tl] = [ID : tl]
[tl, tg] = [ID : tl, t2]
idle = false -> skip

[w : tl] = [w : tl,tl]
skip = [0]

We also make use of equational definitions, exploiting the
property that processes defined using a set of simultaneous
equations have an equivalent description entirely in terms
of the recursion operator.

Each process term, P € Procsys, represents a potential
process which, when given a control system context (i.e. a
network and a data environment), is capable of exhibiting
some behaviour.

Send The term, kli.zz, denotes a process which causes a
message to be queued for transmission on channel k. The
message consists of the message identifier, ¢, and the data
value associated with the variable, z. Sending is asyn-
chronous. The process k!i.z can not be delayed. It causes

its message to be queued instantaneously and terminates
immediately.

Receive k7..z is a process which waits to accept a message
from channel k. It will only accept a message with the iden-
tifier ¢. It will ignore messages with any other identifier,
simply allowing time to pass and other network activity
to occur. When an (-message reaches its acceptance point
during transmission, then x7..z must accept the message
instantly, causing the data variable z to become associ-
ated with the message’s data value. k?:.z then terminates
immediately.

Compute [w : 1, t2] is a process which transforms the data
state according to the specification of the operation w. It
begins execution immediately and is guaranteed to termi-
nate no later (resp. no sooner) than ¢, (resp. #;) time units
after it has started. The specified change to the data state
occurs in a single, instantaneous action at the moment of
termination.

Evaluate Guard v -> P causes the evaluation of the
guard v (which is a predicate on data states) in the current
environment. If the guard is satisfied, the process P be-
gins execution immediately; otherwise v => P simply idles,
allowing time to pass and network activity to occur.

Sequential Composition P ;) behaves just as P until
P terminates. It then carries on to behave as @, using
the state of the network and the data environment at P’s
termination.

Choice P + (@ behaves either as P or as (). The choice
is resolved in favour of whichever process can first perform
an action. Network activity and the passage of time must
be allowed by both P and @ in order to occur; neither
resolves the choice. If both P and @Q can perform an action
simultaneously, the choice is resolved arbitrarily in favour
of one of them.

Interrupt P [> @ behaves as P until either @) can perform
an action or P terminates. In the first case, the system
carries on to behave as () with whatever is the current
state of the network and data environment (P is aborted);
in the second case, the whole process, P [> @, terminates.
Network activity and the passage of time both require the
willingness of P and @ to allow them to occur. When time
passes, it does so in both P and (.

Parallel Composition The parallel operator, P | Q, gives
a simple interleaving of the actions of P and Q. As with the
other operators, network activity and the passage of time
require the willingness of both P and @ to allow them to
occur.

Recursion Equational definition gives the most readable
expression of recursive processes. If X = P is a defining
equation for X, an occurrence of the name X in a process
term denotes a process which can behave as P.

Pﬁtion3 Pﬂ'tionél

__€55->
e 0 o

Consumer Belt

- —_— -

o e o oo

L1 Producer Belt L]
Position 1 Position 2

Fig. 2. Simple Manufacturing Cell

V. EXAMPLE: A SIMPLE MANUFACTURING CELL

Figure 2 illustrates a simple manufacturing cell which
has been discussed in [6]. A production process, outside
the cell, continually deposits items at position 1 of the pro-
ducer conveyor belt. The producer belt controller drives
the belt to move items from position 1 to position 2. The
robot controller captures each item at position 2, rotates
and processes the item. After processing, the robot rotates
again and attempts to deposit the item on the consumer
conveyor belt at position 3. The consumer belt controller
operates the belt to move items from position 3 to position
4 where they are removed by some external consumption
process. We outline an implementation in which the three
controlling processes are physically distributed. They in-
teract with the environment using sensors and actuators,
and communicate with each other via a CAN.

Figures 3,4 and 5 show the main details of implementa-
tions of controllers for the producer belt, robot and con-
sumer belt, respectively. This example informally intro-
duces an Ada-like system description language, imagina-
tively called HL, which is more suitable than LL for describ-
ing complex broadcasting real-time systems. The language
is given a formal semantics in terms of timed transition
systems by translation into LL [15].

The manufacturing cell is implemented by three dis-
tributed tasks which execute in parallel and communicate
via a CAN. They interact with the environment using a va-
riety of sensors and actuators. Environmental interaction is
modelled and implemented by simple sequential operations
(CheckPosition2, BeltOn, DepositItemetc.) which are
usually analysed independently to obtain bounds on per-
formance. It is assumed that sensors and actuators are
not shared but that each is controlled directly by a single
task; other tasks which desire access to a sensor/actuator
must communicate their intentions to the controlling task
by sending a CAN message.

task ProducerBelt with data ProducerBelt
using
constant PRODPERIOD
var pl, p2, belton
op CheckPositionl, CheckPosition2, BeltOn, BeltOff
is
every PRODPERIOD do
CheckPosition2;
snd(pos2,p2) ;
if p2 and belton then BeltOff end_if;
CheckPositioni;
if pl and not (p2 or belton) then BeltOn end_if
end_every
end_task

Fig. 3. Producer Belt Controller

task Robot with data Robot
using
var p2, p3
op ExtendArm, RetractArm,
Captureltem, DepositItem,
RotateA_90, RotateC_180
is
loop do
rcv(pos2,p2);
if p2 then
ExtendArm; Captureltem; RetractArm;
RotateA_90;
ExtendArm;
RotateA_90;
loop RELEASE do
rcv(pos3,p3);
if not p3 then
ExtendArm; DepositItem; RetractArm;
exit RELEASE
end_if
end_loop;
RotateC_180
end_if
end_loop
end_task

ProcessItem; RetractArm;

Fig. 4. Robot Controller

task ConsumerBelt with data ConsumerBelt
using
constant CONSPERIOD
var p3, p4, belton
op CheckPosition3, CheckPosition4, BeltOn, BeltOff
is
every CONSPERIOD do
CheckPosition4;
if p4 and belton then BeltOff end_if
CheckPosition3;
snd(pos3,p3);
if p3 and not (p4 or belton) then BeltOn end_if
end_every
end_task

Fig. 5. Consumer Belt Controller

The producer belt controller is a periodic task. It main-
tains three boolean variables p1, p2 and belton to model
the external environment. pl and p2 are updated by
CheckPositionl and CheckPosition2, respectively, and
are set to true (resp. false) when the corresponding po-
sition sensor indicates the presence (resp. absence) of an
item at its position. belton is updated by BeltOn and
BeltOff in the expected way. Each period, the belt con-
troller interacts with a belt sensor to check if an item has
reached position 2. It broadcasts the sensor value on the
CAN. If there is an item at position 2 and the belt is mov-
ing, then an actuator is triggered to turn the belt off. If an
item is placed in position 1 when the belt is off and there
is no item at position 2, the controller turns the belt on.
The behaviour of the consumer belt controller is similar.

The robot controller is an event-driven task. Repeatedly,
it waits to receive a CAN message, from the producer belt
controller, which indicates the presence or absence of an
item in position 2. When it detects the presence of an item,
it actuates the robot to capture and process it, extending
and retracting the robot arm and rotating the robot as
necessary. Following processing, the robot controller seeks
to deposit the processed item onto the consumer belt. It
does so by repeatedly receiving CAN messages, from the
consumer belt, regarding the status of position 3. When
it receives a message indicating that there is no item at
position 3, it causes the robot to deposit the processed
item and to return to its original position.

The description of the CAN, by which the tasks com-
municate, is trivial and is not given here. It results in a
single communication channel which carries two types of
message, position 2 and position 3 status messages, distin-
guished by the message identifiers pos2 and pos3. A task
which wishes to communicate either by sending or receiv-
ing a message makes the necessary system call (snd or rcv)
with parameters which denote the message identifier and
the data variable for the message data value.

As discussed in section IV-A, the specification and imple-
mentation of the data environment for each task, and the
operations which they can perform upon it, are expressed in
a language of the developer’s choice. We currently use B [1]
for specification and C for implementation. Data clauses
in HL (such as with data ProducerBelt) make the links
to the appropriate specifications and implementations from
which a description of the effect of the state transformers,
and the bounds upon their performance, can be obtained.

VI. CONSTRUCTING A LOW-LEVEL MODEL

An HL system description must be translated into LL be-
fore its behaviour can be simulated or verified. We use
the manufacturing cell example to introduce informally the
translation and to illustrate salient points.

As discussed in section IV, an LL model is a triple
(P, N, D) where P represents the control state of the sys-
tem tasks, NV represents the state of the network and D rep-

resents the data environment. Such a model is constructed
automatically from the system description file, the data
description files and auxiliary files describing the hardware
configuration and kernel implementations. We can only
sketch an outline of the construction here.

A. D — Data Model

The data model is simply a mapping from the task vari-
able names to their values. Operations are modelled as
relations between data states; a “before” state is related to
an “after” state, by an operation, if execution of the oper-
ation in the “before” state is allowed and can lead to the
“after” state. These state transforming relations are de-
rived directly from the specification of the operations. The
data spaces of the system tasks are required to be disjoint
— no shared variables — so in the example, we use a prefix
with each variable name to distinguish variables from dif-
ferent tasks: P_ for producer belt variables; R_ for robot
variables; and C_ for consumer belt variables. This gives
an initial data environment for the manufacturing cell:

{P_pl— L,P_p2— L, P_belton — L,
Rp2— 1L, R p3— L,
C_p3— L,C_pd — L, C_belton — L}

B. N — Network Model

The network model represents for each communication
channel (a CAN bus or internal broadcast channel) its
static attributes, status and pending message queue. Each
channel is initially free and has an empty message queue.
Its static attributes are constructed from a variety of
sources:

o the system description file which, for each channel, de-
fines its messages types, each having a distinct message
identifier, and their priority ordering;

o the data description files from which can be obtained the
size of communicated values; and

o the hardware description files which give details such as
the channel’s data transmission rate and the acceptance
point for the controllers.

This information is sufficient to construct the static at-
tributes for a channel. For a CAN bus operating at 1Mbit /s
and serviced by i82527 controllers, we might construct the
following table of attributes for the channel of the manu-
facturing cell!:

n fact the network model for any system is augmented by a hidden
“internal” channel for each task, so that a loop exit can be modelled
as the sending of an internal message by which the task is waiting
to be interrupted. Figure 6 shows an example of this use in the
definition of Robot. The pre-acceptance time for the exit message is
just the time taken for the task to execute a jump (post-acceptance
time is zero), so the model remains a conservative abstraction of the
implementation.

SA | pos2._ L pos3._
oF e 43 43
5;re 53 33
Opost 10 10
post 12 12

C. P — Task Model

Figure 6 shows the initial task state which is constructed
for the manufacturing cell. This construction is based
mainly upon the system description but, as with the con-
struction of the network model, it relies upon information
derived from a number of other sources.

e The code for each sequential operation is analysed to de-
termine the bounds (i.e. the estimated best case and worst
case execution times) on its execution. It is necessary to
know the architecture of the node on which the task is
to be executed in order to perform the analysis. In the
case of a multi-tasking node, the execution time bounds
must be converted into response time bounds. This analy-
sis is possible for a simple time-slicing scheduler [4]. In fig-
ure 6, every use of [...] represents a computation whose
time bounds, denoted by the enclosed symbolic name, are
the bounds on the response time for the corresponding op-
eration. So, for example, [CheckPosition2] represents
a computation whose bounds are the calculated response
time bounds for the operation CheckPosition2.

¢ Each communication, snd(id,x) or rcv(id,x), requires
some computation time both before and after it (to al-
low for delays caused by configuring a communication con-
troller or handling an interrupt, for example). Let [pre
1, [post !]1 represent the bounds on the before and
after delays for a snd, and [pre 7], [post 7] the corre-
sponding delays for rcv. The calculation of these bounds
requires knowledge of the kernel implementation and the
hardware platform.

e The modelling of timer services (whose use is im-
plied by the periodic behaviour of ProducerBelt and
ConsumerBelt) requires similar information regarding their
low-level implementation. We use [pre Time], [approx
Time] and [post Time] to denote the bounds on the set
up time, resolution and recovery time, respectively, given
by a request for a delay of Time time units.

o [eval guard], [jump] and [branch] denote the
bounds that their names suggest. Occasionally, we
have abbreviated a long sequence of computations
and shown it as a single computation, for example
[CaptureProcessRotate]; this is simply to help clarify
the basic structure of the model.

VII. SIMULATION

A simulator for LL can be constructed directly from its
formal semantics. A prototype simulator has been imple-
mented by encoding the timed transition rules of LL as Pro-
log predicates. The system state is represented as a Prolog
term and the rules can then be used to step through the
possible behaviours. A production simulator would work

directly with the underlying state transition graph. The
user interacts with the simulator via a menu of choices
which indicates which actions can be performed in the cur-
rent state and how much time can elapse before an action
transition must be taken. On choosing a transition, the
resultant state can be used to investigate the condition of
the network and the control and data states of the system
tasks. The use of the simulator allows the system to be
explored, providing the developer with an understanding
of many of its properties before attempting to verify them.
This can help to avoid much wasted effort in attempting
to verify properties that the system does not possess.

VIII. VERIFICATION

Approaches to the automatic verification of finite-state
concurrent systems have been known for more than a
decade [12], [9]. Such techniques are based upon check-
ing that the state graph of a concurrent system is a model
for the temporal logic formulas which are used to specify
desired system properties. Such an approach is of great
practical interest because it allows the developer to verify
a system without constructing a proof and because, when
the verification fails, it is possible automatically to provide
a trace of the unsatisfactory behaviour; this can be very
useful in debugging and in fact such a trace can be used as
input to a simulator so that the behaviour can be explored
in detail. Recent work has shown how systems with a large
number of states can be checked by using a symbolic repre-
sentation of the state graph [7], [19] and how this approach
can be adapted to the verification of real-time systems [3],
[13].

A. Verifying requirements by model-checking

Research into the development of efficient model-
checking techniques for real-time systems is currently very
active [16]. KRONOS [20], [22], [21] is a symbolic model
checker which implements the approach described by Hen-
zinger et al. [13]. It allows timed transition systems to
be checked for properties expressed in the real-time logic
TCTL [2].

For a finite set of atomic propositions P, the formulas of
TCTL are defined as follows:

Gu=p|d|d1Vda| o1 IUpnda |)1 VU2

where p € P, n is a natural number and # is one of the
relational operators <, <, =, >, or >.

TCTL formulas are interpreted over the sequences of
states (paths) generated by a timed transition system. The
details can be found in [13]. Intuitively, ¢1 VU xpn¢2 means
that every path has a finite prefix such that ¢ is satisfied
by the last state at time ¢ where ¢t#n and ¢, is satisfied con-
tinuously until then. A number of abbreviations are com-
monly used, most importantly: ¥V $u,¢ for trueVid gy,
which asserts that on all paths ¢ eventually holds within
n time units; and V Oy, ¢ for =3 Gy, which says that

ProducerBelt | Robot | ConsumerBelt
where
ProducerBelt =
[pre PRODPERIOD] ;
([CheckPosition2]
[eval guardi]
[CheckPositionl] ;

; [pre '1 ; klpos2.p2 ; [post !] ;

; (guardl -> [BeltOff] + not_guardl -> [branch]) ;

[eval guard2] ; (guard2 -> [BeltOn] + not_guard2 -> [branch]) ; idle

) [> [approx PRODPERIOD] ; [post PRODEPERIOD] ; [jumpl ;
Robot =
[pre ?] ; k?pos2.p2 ; [post 7] ;
[eval guard3] ;
(guard3 ->
[CaptureProcessRotate]; (Release [> internal?RELEASE) ;
+ notguard3 -> [branch]) ; [jump] ; Robot

Release =
[pre ?] ; k?pos3.p3 ; [post 7] ;
[eval guard4] ;
(guard4 -> [Deposit]
[jump] ; Release

ConsumerBelt =
[pre CONSPERIOD] ;
([CheckPosition4] ; [eval guard5] ;
(guard5 -> [BeltOff] + notguard5 -> [branch]) ;
[CheckPosition3] ; [pre !] ; k!pos3.p3 ; [post !] ;

ProducerBelt

[RotateC_180]

; internal!RELEASE ; idle + notguard4 -> [branch]) ;

[eval guard6] ; (guardé -> [BeltOn] + not_guard6 -> [branch]) ; idle

) [> [approx CONSPERIOD]; [post CONSPERIOD] ; [jump] ;

guardl == P_p2 and P_belton
guard3 == R_p2
guardb == C_p4 and C_belton

guard4 == not R_p3

not_guardn == not guardn

ConsumerBelt

guard2 == P_pl and not (P_p2 or P_belton)

guard6é == C_p3 and not (C_p4 or C_belton)

Fig. 6. Manufacturing Cell: Initial Task State

on all paths ¢ holds continuously for n time units. The
undecorated operators, V< and VO abbreviate V & o, and
V O, respectively.

TCTL is expressive enough to allow us to express most
system properties of interest. For example, a bounded re-
sponse property can be easily stated,

V O(stimulus = V & <sresponse)

which captures the requirement that after any occurrence
of a stimulus, a response will always happen within 5
time units. Other useful properties such as bounded in-
variance and bounded inevitability can be expressed just
as easily.

The region construction of [2] extends the possibility of
model-checking to systems with infinite state spaces caused
by the use of a dense time model. However our state spaces
are infinite because of the addition of infinite data types,
most notably the use of an unbounded queue to represent
the messages pending transmission on a CAN channel. We
therefore need to apply data abstraction techniques [8],
[18], [11] to all of our data types in order to produce fi-
nite representations which still preserve the properties in
which we are interested. An obvious abstraction for a CAN
channel queue, for example, is to maintain only the latest
message to be queued for each distinct message identifier.

Since the set of message identifiers for any channel is fi-
nite then the queues will be finite. This not only accords
with most, if not all, existing implementations but also the
application of the abstraction to the state space allows us
to label those states, if any, in which duplicate message
identifiers occur. It is then easy to check for such dupli-
cation, which may indicate an error condition such as the
overwriting of an active transmission message object or the
inadvertent use of the same message identifier by distinct
nodes.

In the case of the manufacturing cell, there are many
interesting properties which can be checked. Brockmeyer
et al. [6] suggest: “Does the robot process ever enter the
processing phase when there is no item in position” and
“Does an item ever wait in position 2 for more than 20 time
units before being processed”. If we use proposional labels
P_P2 and R_PROCESS to label those states in which an item
reaches position 2 and processing begins, respectively, then
we can express the bounded response property in TCTL as:

init = VO P_P2 = V & 99 R_PROCESS

Other properties can be tested similarly. For example, that
the belt is turned off quickly enough when an item is de-
tected at position 2; that the belt is not turned on while
there is an item at position 2; that the robot begins pro-
cessing only after capturing an item, and so on.

An advantage of model-checking is that a partial set of
requirements, such as this, can be tested independently and
failure traces obtained to aid debugging.

IX. CoNcLUsIiONS AND FURTHER WORK

This paper describes ongoing work to provide a tool-
supported engineering environment for the development of
distributed embedded control systems. We believe that
CAN will be an important component in many such sys-
tems because of its properties of robustness and predictabil-
ity. We have therefore incorporated an abstraction of
CAN’s broadcast communication protocol into an inte-
grated formal model of system behaviour. This model is
being used as the basis of the development of tools for sim-
ulation, verification and code generation. The main advan-
tage of such an approach is that it facilitates a fine-grained
analysis of models which are abstractly related to the sys-
tem implementation and which can be directly checked for
compliance with both temporal and functional specifica-
tions.

So far, investigation has shown that implementations
based upon the MC68376 and CPU+82527 are amenable
to the approach described. The implementation of multi-
tasking is currently limited to preemptive time-sliced
scheduling which allows an independent analysis to cal-
culate the WCRT of all computations. Clearly there are
some systems for which this may make it difficult occasion-
ally to achieve the responsiveness that is required by some
tasks; however, there are many for which this approach to
scheduling is adequate. Future work will examine the ex-
tension of our model to accomodate fixed priority preemp-
tive scheduling. Such an extension is possible but leads to
harder model-checking and may constrain further the size
of systems which can be analysed automatically. As usual,
there is a trade-off to be made between the simplicity of
the analysis and the sophistication of the implementation.

An essential requirement to allow the development and
analysis of large-scale applications is for modular design,
implementation and verification. HL, in its extended form,
permits the composition of system descriptions, allowing
channel sharing and the renaming of message identifiers
where necessary. Inevitably, however, in general, compo-
sition does not preserve all system properties when the
composed systems broadcast on a shared channel. We are
currently investigating the use of a form of rely-guarantee
reasoning to allow the verification of some properties of
compound systems based only on the construction of mod-
els of the components.

Finally, we wish to investigate to what extent it is pos-
sible and useful to develop an extended system model to
reason about behaviour in the presence of network errors.

REFERENCES

[1] J.R. Abrial. The B Book — Assigning Programs to Meanings.
Cambridge University Press, 1996.
[2] R. Alur, C. Courcoubetis, and D. Dill. Automata for modelling

(10]

(1]

[13]

[14]

(15]

[16]

(17]

real-time systems.
322-335, 1990.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense
real-time. Information and Computation, 104:2 — 34, 1993.

S Bradley, W Henderson, D Kendall, and A Robson. A formally
based hard real-time kernel. Microprocessors and Microsystems,
18(9):513-521, November 1994.

S Bradley, W D Henderson, D Kendall, and A P Robson.
Application-Oriented Real-Time Algebra. Software Engineering
Journal, 9(5):201-212, September 1994.

M. Brockmeyer, F. Jahanian, C. Heitmeyer, and B. Labaw. An
approach to monitoring and assertion-checking of real-time spec-
ifications. In Proceedings of the jth IEEE Workshop in Parallel
and Distributed Real-time Systems, 1996.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic model checking: 1020 states and beyond. In-
formation and Computation, 98(2):142-170, 1992.

E. Clarke, O. Grumberg, and D. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and
Systems, 16(5):1512-1542, September 1994.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri-
fication of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244-263, 1986.

J.C. Corbett. Timing analysis of Ada tasking programs. IEEE
Transactions on Software Engineering, 22(7):461-483, July
1996.

D. Dams, R. Gerth, and O. Grumberg. Absract interpretation
of reactive systems. ACM Transactions on Programming Lan-
guages and Systems, 19(2):253-291, March 1997.

E.A. Emerson and E.M. Clarke. Using branching-time temporal
logic to synthesize synchronization skeletons. Science of Com-
puter Programming, 2(3):241-266, 1982.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Compu-
tation, 111(2):193-244, 1994,

ISO/DIS 11898: Road Vehicles — interchange of digital informa-
tion — Controller Area Network (CAN) for high speed commu-
nication, 1992.

D. Kendall, S. Bradley, W. Henderson, and A. Robson. A real-
time formal model of broadcasting embedded control systems.
Technical Report (to appear), University of Northumbria, 1997.
K. Larsen, P. Pettersson, and Wang Yi. Model-checking for real-
time systems. In Proc. of Fundamentals of Computation Theory,
1995.

Y-T.S. Li, S. Malik, and A. Wolfe. Cache modelling for real-
time software: Beyond direct mapped instruction caches. In
Proceedings of 17th IEEE Real-time Systems Symposium, pages
254-263, December 1996.

C. Losieaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem.
Property preserving abstractions for the verification of concur-
rent systems. Formal Methods in System Design, 6:1-35, 1995.
K.L. McMillan. Symbolic Model Checking: An approach to the
State Ezplosion Problem. Kluwer, 1993.

X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifi-
cations into extended automata. IEEFE Transactions of Software
Engineering, 18(9):794 — 804, 1992.

A. Olivero and S. Yovine. Kronos: A tool for verifying real-time
systems — Users’ guide and reference manual — draft 0.0, 1993.
S. Yovine. Méthodes et Outils pour la Vérification Symbolique
de Systémes Temporisés. PhD thesis, Institut National Poly-
technique de Grenoble, May 1993.

In Proc. 17th ICALP, volume 443, pages

