
1A Formal Basis for Tool-supported Simulation andVeri�cation of Real-Time CAN SystemsD.Kendall, S.Bradley, W.D.Henderson, A.P.RobsonAbstract| In this paper, we present a framework for theformal modelling of the temporal and functional behaviourof real-time distributed systems which communicate usingone or more Controller Area Networks. A low-level mod-elling language is introduced whose timed transition seman-tics provides an abstract basis for the development of toolsto support the simulation of industrial-strength systems andthe veri�cation of safety and liveness properties, includingbounded response properties. The implementation and ap-plication of a simulator is described. We show how the inte-grated analysis of network and process behaviour permits aless pessimistic view to be taken of a wider range of systemproperties than is allowed by traditional scheduling analysis.The practical utility of the approach is emphasised and weillustrate how it can be applied to complex systems using avariety of CAN controllers and micro-controllers, includingthe 82527 and the MC68376.I. IntroductionEmbedded control systems appear in many of the manu-factured products upon which our society increasingly de-pends. System developers need better development meth-ods in order to be more con�dent that the systems whichthey deliver will behave properly. The central problem, asalways, is to develop a `system' to satisfy a given `speci-�cation', taking all reasonable steps to demonstrate satis-faction. Testing has, and will continue to have, a majorrôle to play in providing evidence of satisfaction. Post-hoctesting of arbitrary systems on its own, however, should notgive developers great con�dence in the continuing `good be-haviour' of their products; particularly when the productis a distributed, hard real-time, embedded control system.Simulation of a model of the system under development cangive early reassurance that the development is proceedingalong the right lines. Veri�cation can provide even greatercon�dence. Formal methods have been successfully appliedto the problem of verifying that abstract design models sat-isfy formal speci�cations of both functional and temporalproperties. However, comparatively little work has soughtto apply these techniques to implementation models. Thestate explosion problem is an e�ective deterrent. In this pa-per, we describe a modelling language which can be used todevelop timed transition models of distributed control sys-tems in which the processing elements communicate usinga deterministic broadcast bus. We apply this approach tothe industry standard Controller Area Network and showhow the modelling language can be used to facilitate an in-tegrated investigation of the behaviour both of computingtasks and of the network in CAN-based systems. The ex-The authors are with the Department of Computing, Uni-versity of Northumbria at Newcastle, Ellison Place, Newcastleupon Tyne, NE1 8ST. Email:fdavid.kendall, steven.bradley,william.henderson, adrian.robsong@unn.ac.uk

tent to which symbolic and modular veri�cation techniquescan be applied to mitigate the e�ects of the state explosionproblem is an open question. Nevertheless, we have foundthat the approach provides a good basis for simulation, ver-i�cation and implementation, and thus leads to increasedcon�dence in the proper behaviour of systems.The work described in this paper forms part of a pro-gramme whose objective is to provide a framework for thedevelopment of hard real-time distributed embedded sys-tems, from requirements elicitation and validation to im-plementation. Our approach is guided by several criteria:� We would like to realize a method which can be appliedby system developers to problems of real interest. Applica-tion of the method should lead to justi�ably increased con-�dence in the behaviour of delivered systems. Furthermore,developers should be free to choose standard components(hardware circuits, compilers, etc.) in the production oftheir chosen solutions, with the restriction that their run-time behaviour is predictable; in particular, it should bepossible to put bounds upon the time taken to completeany run-time operation. Currently, this limits choice tosimple components, although recent advances in executiontime analysis are making it possible to reason about morecomplicated features [17].� It should be possible to verify formally models of low-level implementations with respect to high-level speci�ca-tions of requirements.� We should be able to model and analyse both functionaland temporal properties of systems.� We wish to relate well-developed, stable theory from allphases of development { from requirements elicitation toscheduling theory { in a coherent approach, supported ateach stage by appropriate software tools.This paper introduces a framework which makes it pos-sible to produce abstract models of distributed, real-timecontrol systems which communicate using a determinis-tic broadcast communication protocol. Broadcast commu-nication is used frequently in the implementation of dis-tributed real-time systems, but has received comparativelylittle attention from the formal methods community in con-trast to point-to-point synchronous communication. In theapproach adopted here, we have attempted to maintaina clear separation of concerns in considering various as-pects of implementation, particularly communication, con-currency, data and scheduling. This means that we canexperiment with a variety of design and implementationtechniques within the same overall framework.The models which we produce are intended to allow the



2application of automated analysis techniques in order to in-vestigate system properties. To achieve this goal, we needmodels which are accurate enough so that we can be con-�dent that the conclusions which we reach about a modelapply also to the implementation from which the modelwas developed, but also abstract enough so that analysis ofthe model is tractable. Our approach in this respect buildsupon [5]. We adopt the idea of a \conservative abstrac-tion" from [10]. An abstract model of an implementationis a conservative abstraction if every possible behaviour ofthe implementation is represented by some behaviour ofthe model. Although not desirable, a model may exhibitbehaviours which do not correspond to any possible be-haviour of the implementation which it models, i.e. thebehaviours of the model are a superset of the behaviours ofthe implementation. This allows some necessary freedomin the development of an abstraction. By restricting at-tention to requirements which are expressed as propertiesof all behaviours, it is su�cient to establish that a modelsatis�es some requirement in order to conclude that theimplementation from which the model was developed alsosatis�es the requirement.The paper is organised as follows: section II introducesan informal system model; section III outlines properties ofa CAN implementation which are assumed in the ensuingformal model. The low-level modelling language is intro-duced in section IV. Section V describes a simple manu-facturing cell which is used as an example in sections VI,VII and VIII which discuss the construction of a low-levelmodel, its simulation and veri�cation, respectively. Sec-tion IX concludes and outlines our plans for further work.II. Informal control system modelWe address a class of control systems (see �gure 1) whichcan be identi�ed by a number of properties:� Control is distributed over a number of tasks which arestatically allocated to computing nodes. A computing nodeconsists of at least a processing unit, which has access tosome local memory, one or more communication controllersand a programmable timer.� Tasks communicate by using one or more communicationchannels (buses) to send and receive broadcast messages.Each communication controller in a computing node is re-sponsible for the node's access to a single channel. If anode communicates using more than one channel then itneeds a communication controller for each channel that ituses.� A number of tasks may be allocated to a single node andwill share the processing unit using some �xed schedulingpolicy.� In order to simplify the model and to facilitate systemreorganization, we assume that all tasks communicate us-ing (logically) a single mechanism, whether they share acomputing node or not. So even tasks which share a pro-cessor, communicate by passing messages and do not haveunconstrained access to shared memory.
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BusFig. 1. Control system model� In addition, each computing node may have access to anumber of sensors and actuators which form part of theinterface to the controlled system. In the case of multi-tasking, it is assumed that sensors and actuators are notshared but that each is accessed by a single task.III. Controller Area NetworkCAN uses a simple, deterministic, broadcast communi-cation protocol which makes it not only attractive to devel-opers but also amenable to formal modelling and analysis.We assume that the basic principles of CAN are familiarand state here only those assumptions and simpli�cationswhich are relevant to what follows.� A transmitting node attempts to transmit its highest pri-ority message. (This requirement is satis�ed trivially bythe use of TouCAN controllers, for example, but requiresmore e�ort on the part of the programmer for a controllersuch as the 82527.)� The transmitter with the frame of highest priority gainsbus access without experiencing any delay due to any pos-sible access con
ict.� A transmitting node which loses the arbitration recog-nises this fact and behaves as a receiver of the frame fromthat point on.� A controller does not release the bus between transmis-sions, i.e. it enters a frame for arbitration in every arbitra-tion phase if it has a frame to transmit. So lower priorityframes cannot delay the transmission of pending frames ofhigher priority by beginning transmission during a gap be-tween frames. The standard [14] p.26 says, 'A frame whichis pending for transmission during the transmission of an-other frame is started in the �rst bit following intermission: : : '.� It is guaranteed that a frame is \simultaneously" ac-cepted either by all nodes which are con�gured to acceptit, or by none of them (assuming that nodes are operatingnormally). There is no possibility of a \partially success-ful" transmission.� We assume that we can determine the point during thetransmission of a frame when a controller begins its accep-tance test for the frame. In normal operation, a controllerwhich becomes con�gured to accept messages at any timebefore it begins its acceptance test will accept all messageswhich pass the test thereafter.



3� We ignore the possibility of error and overload frames.� We ignore the distinction between error-active and error-passive nodes.� We ignore the di�erence between the transmitter and thereceiver of a message in determining the point at which aframe is valid (end of EOF for transmitter, end-of-EOF -1 bit for receiver).IV. LL: A low-level modelling languageThe construction of an integrated model of a CAN-basedsystem requires the modelling of both the static and dy-namic properties of tasks, network and data environmentin a single framework. This section introduces a low-levelmodelling language, LL, which is designed for this purpose.A. Modelling the data environmentThere are many well-known speci�cation languages (Z,VDM and B, for example) which can be used to model datastates and the e�ects of sequential operations upon them.Well de�ned programming languages are clearly suitablealso. We want to allow the developer as much freedom aspossible in their choice of approach. Whatever language isused, LL requires only that the following can be de�ned:� A mapping, D : V ar 7! V alue, from variables to valueswhich represents the data environment.� A lookup operationD :x , which for any variable x denotesits value in the map D .� An update operation D [x := v], which denotes a dataenvironment D 0, which is the same as D except that x isassociated with v in D 0.� A binary relation !=), such that D !=) D 0 for each taskcomputation !, i� ! can be executed in D producing a newstate D 0. We use the operation label ID to represent theoperation which leaves every data environment unchanged.8D ;D 0 � D ID=) D 0 , D = D 0.� A binary relation, j= between data environments andpredicate symbols where for any D and any 
, D j= 
 i� thepredicate associated with 
 \holds" in D . We write D 6j= 
for : (D j= 
). We assume the existence of distinguishedpredicate symbols true and false, such that 8D � D j= trueand 8D � D 6j= false.B. Modelling the networkThe model of the network should allow us to answer avariety of questions for any given channel (CAN bus orinternal data path):� What messages are currently pending transmission?� Is the channel currently in use or can a node begin thetransmission of a new message?� In the event that two or more nodes begin transmittingsimultaneously, which will win the arbitration and succeedin transmitting its message?� How long from the start of its transmission will it takefor a message to become available for acceptance?

� By what point must a node be con�gured for acceptanceof a message type in order to guarantee that it will acquirethe next such message?In order to give an answer to such questions, the net-work model must represent both the static and dynamicproperties of each channel. Static properties of a channelare �xed throughout the execution of the system. Theycomprise:� the name of the channel;� the set of message identi�ers which can be transmittedon the channel;� a total ordering on the set of message identi�ers accord-ing to their priority (a message �1 is of higher priority thana message �2, written �1 v �2, if the message identi�er of�1 is of higher priority than the message identi�er of �2);� a pair of functions �lpre and �upre , from messages to timevalues, giving the lower and upper bounds on the timetaken from the start of a message transmission to the pointat which controllers begin their acceptance test for the mes-sage (the pre-acceptance phase of transmission); and� a pair of functions �lpost and �upost , from messages totime values, giving the lower and upper bounds on thetime taken from the start of the acceptance tests to thechannel becoming free for the next transmission (the post-acceptance phase of transmission).The dynamic properties of a channel change as the systemexecutes and are given by:� the status of the channel (a channel is either free, ina pre-acceptance phase of transmission, at an acceptancepoint or in a post-acceptance phase of transmission);� the priority-ordered queue of messages pending transmis-sion on the channel.The channels in a network can independently performany of the following actions (except Age Network),changing thier dynamic properties accordingly:Start Transmission When a channel is free, the highestpriority pending message begins transmission and is re-moved from the pending message queue. If there are nopending messages, the channel simply idles, allowing timeto pass.Acceptance A channel which is transmitting a message,allows time to pass at most up to the latest time at whichthe controllers must begin their acceptance test for the mes-sage. The acceptance test can not begin before its earliestallowed time.Finish Transmission When all properly con�gured nodeshave performed their acceptance test for the message, thechannel completes the transmission of any following bits inthe message frame, time passing as it does so.Release Channel When enough time has elapsed to com-plete the transmission of the message frame and to allowfor the intermission, the channel becomes free again for thetransmission of the next message.



4Age Network Time can pass in a network only when itcan do so for all of its channels.C. Modelling the behaviour of tasksThe behaviour of tasks is modelled using a simple processlanguage, given by the grammar:P ::= �!�:x j �?�:x j [! : t1; t2] j 
 -> Pj P ; Q j P + Q j P [> Q j P j Qj recX:P j Xwhere � is a channel name, � is a message identi�er, x isa data variable, ! is a data operation, t1; t2 2 Time1 aretime values, 
 is a predicate symbol, P ;Q are process termsand X is a process variable. These terms represent basicprocesses which:� enqueue a message for transmission on a channel,� accept a message from a channel,� perform a computation, and� evaluate a guard;and compound processes formed by:� sequential composition,� choice,� interrupt, and� parallel composition.The operators bind from tightest to loosest according tothe precedence ordering: ;, ->, +, [>, |.Repetitive behaviour is modelled by recursion: rec X.P.The free variables of a term are those which are not boundby some recursion. The closed terms are those terms with-out free variables. We denote by ProcSys the set of closedterms which do not violate restrictions on the use of re-cursion: in particular, parallel composition is not allowedinside recursion and all use of recursion must be guardedby some non-zero time delay.We use a number of syntactic abbreviations:[t1] � [ID : t1] [! : t1] � [! : t1; t1][t1; t2] � [ID : t1; t2] skip � [0]idle � false -> skipWe also make use of equational de�nitions, exploiting theproperty that processes de�ned using a set of simultaneousequations have an equivalent description entirely in termsof the recursion operator.Each process term, P 2 ProcSys, represents a potentialprocess which, when given a control system context (i.e. anetwork and a data environment), is capable of exhibitingsome behaviour.Send The term, �!�:x , denotes a process which causes amessage to be queued for transmission on channel �. Themessage consists of the message identi�er, �, and the datavalue associated with the variable, x . Sending is asyn-chronous. The process �!�:x can not be delayed. It causes

its message to be queued instantaneously and terminatesimmediately.Receive �?�:x is a process which waits to accept a messagefrom channel �. It will only accept a message with the iden-ti�er �. It will ignore messages with any other identi�er,simply allowing time to pass and other network activityto occur. When an �-message reaches its acceptance pointduring transmission, then �?�:x must accept the messageinstantly, causing the data variable x to become associ-ated with the message's data value. �?�:x then terminatesimmediately.Compute [! : t1; t2] is a process which transforms the datastate according to the speci�cation of the operation !. Itbegins execution immediately and is guaranteed to termi-nate no later (resp. no sooner) than t2 (resp. t1) time unitsafter it has started. The speci�ed change to the data stateoccurs in a single, instantaneous action at the moment oftermination.Evaluate Guard 
 -> P causes the evaluation of theguard 
 (which is a predicate on data states) in the currentenvironment. If the guard is satis�ed, the process P be-gins execution immediately; otherwise 
 -> P simply idles,allowing time to pass and network activity to occur.Sequential Composition P ; Q behaves just as P untilP terminates. It then carries on to behave as Q , usingthe state of the network and the data environment at P 'stermination.Choice P + Q behaves either as P or as Q . The choiceis resolved in favour of whichever process can �rst performan action. Network activity and the passage of time mustbe allowed by both P and Q in order to occur; neitherresolves the choice. If both P and Q can perform an actionsimultaneously, the choice is resolved arbitrarily in favourof one of them.Interrupt P [> Q behaves as P until either Q can performan action or P terminates. In the �rst case, the systemcarries on to behave as Q with whatever is the currentstate of the network and data environment (P is aborted);in the second case, the whole process, P [> Q , terminates.Network activity and the passage of time both require thewillingness of P and Q to allow them to occur. When timepasses, it does so in both P and Q .Parallel Composition The parallel operator, P j Q , givesa simple interleaving of the actions of P andQ . As with theother operators, network activity and the passage of timerequire the willingness of both P and Q to allow them tooccur.Recursion Equational de�nition gives the most readableexpression of recursive processes. If X b= P is a de�ningequation for X , an occurrence of the name X in a processterm denotes a process which can behave as P .
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Fig. 2. Simple Manufacturing CellV. Example: A Simple Manufacturing CellFigure 2 illustrates a simple manufacturing cell whichhas been discussed in [6]. A production process, outsidethe cell, continually deposits items at position 1 of the pro-ducer conveyor belt. The producer belt controller drivesthe belt to move items from position 1 to position 2. Therobot controller captures each item at position 2, rotatesand processes the item. After processing, the robot rotatesagain and attempts to deposit the item on the consumerconveyor belt at position 3. The consumer belt controlleroperates the belt to move items from position 3 to position4 where they are removed by some external consumptionprocess. We outline an implementation in which the threecontrolling processes are physically distributed. They in-teract with the environment using sensors and actuators,and communicate with each other via a CAN.Figures 3,4 and 5 show the main details of implementa-tions of controllers for the producer belt, robot and con-sumer belt, respectively. This example informally intro-duces an Ada-like system description language, imagina-tively called HL, which is more suitable than LL for describ-ing complex broadcasting real-time systems. The languageis given a formal semantics in terms of timed transitionsystems by translation into LL [15].The manufacturing cell is implemented by three dis-tributed tasks which execute in parallel and communicatevia a CAN. They interact with the environment using a va-riety of sensors and actuators. Environmental interaction ismodelled and implemented by simple sequential operations(CheckPosition2, BeltOn, DepositItem etc.) which areusually analysed independently to obtain bounds on per-formance. It is assumed that sensors and actuators arenot shared but that each is controlled directly by a singletask; other tasks which desire access to a sensor/actuatormust communicate their intentions to the controlling taskby sending a CAN message.

task ProducerBelt with data ProducerBeltusingconstant PRODPERIODvar p1, p2, beltonop CheckPosition1, CheckPosition2, BeltOn, BeltOffisevery PRODPERIOD doCheckPosition2;snd(pos2,p2);if p2 and belton then BeltOff end_if;CheckPosition1;if p1 and not (p2 or belton) then BeltOn end_ifend_everyend_task Fig. 3. Producer Belt Controller
task Robot with data Robotusingvar p2, p3op ExtendArm, RetractArm,CaptureItem, DepositItem,RotateA_90, RotateC_180isloop dorcv(pos2,p2);if p2 thenExtendArm; CaptureItem; RetractArm;RotateA_90;ExtendArm; ProcessItem; RetractArm;RotateA_90;loop RELEASE dorcv(pos3,p3);if not p3 thenExtendArm; DepositItem; RetractArm;exit RELEASEend_ifend_loop;RotateC_180end_ifend_loopend_task Fig. 4. Robot Controller
task ConsumerBelt with data ConsumerBeltusingconstant CONSPERIODvar p3, p4, beltonop CheckPosition3, CheckPosition4, BeltOn, BeltOffisevery CONSPERIOD doCheckPosition4;if p4 and belton then BeltOff end_ifCheckPosition3;snd(pos3,p3);if p3 and not (p4 or belton) then BeltOn end_ifend_everyend_task Fig. 5. Consumer Belt Controller



6 The producer belt controller is a periodic task. It main-tains three boolean variables p1, p2 and belton to modelthe external environment. p1 and p2 are updated byCheckPosition1 and CheckPosition2, respectively, andare set to true (resp. false) when the corresponding po-sition sensor indicates the presence (resp. absence) of anitem at its position. belton is updated by BeltOn andBeltOff in the expected way. Each period, the belt con-troller interacts with a belt sensor to check if an item hasreached position 2. It broadcasts the sensor value on theCAN. If there is an item at position 2 and the belt is mov-ing, then an actuator is triggered to turn the belt o�. If anitem is placed in position 1 when the belt is o� and thereis no item at position 2, the controller turns the belt on.The behaviour of the consumer belt controller is similar.The robot controller is an event-driven task. Repeatedly,it waits to receive a CAN message, from the producer beltcontroller, which indicates the presence or absence of anitem in position 2. When it detects the presence of an item,it actuates the robot to capture and process it, extendingand retracting the robot arm and rotating the robot asnecessary. Following processing, the robot controller seeksto deposit the processed item onto the consumer belt. Itdoes so by repeatedly receiving CAN messages, from theconsumer belt, regarding the status of position 3. Whenit receives a message indicating that there is no item atposition 3, it causes the robot to deposit the processeditem and to return to its original position.The description of the CAN, by which the tasks com-municate, is trivial and is not given here. It results in asingle communication channel which carries two types ofmessage, position 2 and position 3 status messages, distin-guished by the message identi�ers pos2 and pos3. A taskwhich wishes to communicate either by sending or receiv-ing a message makes the necessary system call (snd or rcv)with parameters which denote the message identi�er andthe data variable for the message data value.As discussed in section IV-A, the speci�cation and imple-mentation of the data environment for each task, and theoperations which they can perform upon it, are expressed ina language of the developer's choice. We currently use B [1]for speci�cation and C for implementation. Data clausesin HL (such as with data ProducerBelt) make the linksto the appropriate speci�cations and implementations fromwhich a description of the e�ect of the state transformers,and the bounds upon their performance, can be obtained.VI. Constructing a low-level modelAn HL system description must be translated into LL be-fore its behaviour can be simulated or veri�ed. We usethe manufacturing cell example to introduce informally thetranslation and to illustrate salient points.As discussed in section IV, an LL model is a triple(P ;N ;D) where P represents the control state of the sys-tem tasks, N represents the state of the network and D rep-

resents the data environment. Such a model is constructedautomatically from the system description �le, the datadescription �les and auxiliary �les describing the hardwarecon�guration and kernel implementations. We can onlysketch an outline of the construction here.A. D { Data ModelThe data model is simply a mapping from the task vari-able names to their values. Operations are modelled asrelations between data states; a \before" state is related toan \after" state, by an operation, if execution of the oper-ation in the \before" state is allowed and can lead to the\after" state. These state transforming relations are de-rived directly from the speci�cation of the operations. Thedata spaces of the system tasks are required to be disjoint{ no shared variables { so in the example, we use a pre�xwith each variable name to distinguish variables from dif-ferent tasks: P for producer belt variables; R for robotvariables; and C for consumer belt variables. This givesan initial data environment for the manufacturing cell:fP p1 7! ?;P p2 7! ?;P belton 7! ?;R p2 7! ?;R p3 7! ?;C p3 7! ?;C p4 7! ?;C belton 7! ?gB. N { Network ModelThe network model represents for each communicationchannel (a CAN bus or internal broadcast channel) itsstatic attributes, status and pending message queue. Eachchannel is initially free and has an empty message queue.Its static attributes are constructed from a variety ofsources:� the system description �le which, for each channel, de-�nes its messages types, each having a distinct messageidenti�er, and their priority ordering;� the data description �les from which can be obtained thesize of communicated values; and� the hardware description �les which give details such asthe channel's data transmission rate and the acceptancepoint for the controllers.This information is su�cient to construct the static at-tributes for a channel. For a CAN bus operating at 1Mbit/sand serviced by i82527 controllers, we might construct thefollowing table of attributes for the channel of the manu-facturing cell1:1In fact the network model for any system is augmented by a hidden\internal" channel for each task, so that a loop exit can be modelledas the sending of an internal message by which the task is waitingto be interrupted. Figure 6 shows an example of this use in thede�nition of Robot. The pre-acceptance time for the exit message isjust the time taken for the task to execute a jump (post-acceptancetime is zero), so the model remains a conservative abstraction of theimplementation.



7SA pos2. v pos3.�lpre 43 43�upre 53 53�lpost 10 10�upost 12 12C. P { Task ModelFigure 6 shows the initial task state which is constructedfor the manufacturing cell. This construction is basedmainly upon the system description but, as with the con-struction of the network model, it relies upon informationderived from a number of other sources.� The code for each sequential operation is analysed to de-termine the bounds (i.e. the estimated best case and worstcase execution times) on its execution. It is necessary toknow the architecture of the node on which the task isto be executed in order to perform the analysis. In thecase of a multi-tasking node, the execution time boundsmust be converted into response time bounds. This analy-sis is possible for a simple time-slicing scheduler [4]. In �g-ure 6, every use of [...] represents a computation whosetime bounds, denoted by the enclosed symbolic name, arethe bounds on the response time for the corresponding op-eration. So, for example, [CheckPosition2] representsa computation whose bounds are the calculated responsetime bounds for the operation CheckPosition2.� Each communication, snd(id,x) or rcv(id,x), requiressome computation time both before and after it (to al-low for delays caused by con�guring a communication con-troller or handling an interrupt, for example). Let [pre!], [post !] represent the bounds on the before andafter delays for a snd, and [pre ?], [post ?] the corre-sponding delays for rcv. The calculation of these boundsrequires knowledge of the kernel implementation and thehardware platform.� The modelling of timer services (whose use is im-plied by the periodic behaviour of ProducerBelt andConsumerBelt) requires similar information regarding theirlow-level implementation. We use [pre Time], [approxTime] and [post Time] to denote the bounds on the setup time, resolution and recovery time, respectively, givenby a request for a delay of Time time units.� [eval guard], [jump] and [branch] denote thebounds that their names suggest. Occasionally, wehave abbreviated a long sequence of computationsand shown it as a single computation, for example[CaptureProcessRotate]; this is simply to help clarifythe basic structure of the model.VII. SimulationA simulator for LL can be constructed directly from itsformal semantics. A prototype simulator has been imple-mented by encoding the timed transition rules of LL as Pro-log predicates. The system state is represented as a Prologterm and the rules can then be used to step through thepossible behaviours. A production simulator would work

directly with the underlying state transition graph. Theuser interacts with the simulator via a menu of choiceswhich indicates which actions can be performed in the cur-rent state and how much time can elapse before an actiontransition must be taken. On choosing a transition, theresultant state can be used to investigate the condition ofthe network and the control and data states of the systemtasks. The use of the simulator allows the system to beexplored, providing the developer with an understandingof many of its properties before attempting to verify them.This can help to avoid much wasted e�ort in attemptingto verify properties that the system does not possess.VIII. VerificationApproaches to the automatic veri�cation of �nite-stateconcurrent systems have been known for more than adecade [12], [9]. Such techniques are based upon check-ing that the state graph of a concurrent system is a modelfor the temporal logic formulas which are used to specifydesired system properties. Such an approach is of greatpractical interest because it allows the developer to verifya system without constructing a proof and because, whenthe veri�cation fails, it is possible automatically to providea trace of the unsatisfactory behaviour; this can be veryuseful in debugging and in fact such a trace can be used asinput to a simulator so that the behaviour can be exploredin detail. Recent work has shown how systems with a largenumber of states can be checked by using a symbolic repre-sentation of the state graph [7], [19] and how this approachcan be adapted to the veri�cation of real-time systems [3],[13].A. Verifying requirements by model-checkingResearch into the development of e�cient model-checking techniques for real-time systems is currently veryactive [16]. KRONOS [20], [22], [21] is a symbolic modelchecker which implements the approach described by Hen-zinger et al. [13]. It allows timed transition systems tobe checked for properties expressed in the real-time logicTCTL [2].For a �nite set of atomic propositions P , the formulas ofTCTL are de�ned as follows:� ::= p j :� j �1 _ �2 j �1 9U#n�2 j �1 8U#n�2where p 2 P , n is a natural number and # is one of therelational operators <, �, =, �, or >.TCTL formulas are interpreted over the sequences ofstates (paths) generated by a timed transition system. Thedetails can be found in [13]. Intuitively, �1 8U#n�2 meansthat every path has a �nite pre�x such that �2 is satis�edby the last state at time t where t#n and �1 is satis�ed con-tinuously until then. A number of abbreviations are com-monly used, most importantly: 83#n� for true8U#n�,which asserts that on all paths � eventually holds withinn time units; and 82#n� for :93#n:�, which says that



8ProducerBelt | Robot | ConsumerBeltwhereProducerBelt =[pre PRODPERIOD] ;([CheckPosition2] ; [pre !] ; k!pos2.p2 ; [post !] ;[eval guard1] ; (guard1 -> [BeltOff] + not_guard1 -> [branch]) ;[CheckPosition1] ;[eval guard2] ; (guard2 -> [BeltOn] + not_guard2 -> [branch]) ; idle) [> [approx PRODPERIOD] ; [post PRODEPERIOD] ; [jump] ; ProducerBeltRobot =[pre ?] ; k?pos2.p2 ; [post ?] ;[eval guard3] ;(guard3 ->[CaptureProcessRotate]; (Release [> internal?RELEASE) ; [RotateC_180]+ notguard3 -> [branch]) ; [jump] ; RobotRelease =[pre ?] ; k?pos3.p3 ; [post ?] ;[eval guard4] ;(guard4 -> [Deposit] ; internal!RELEASE ; idle + notguard4 -> [branch]) ;[jump] ; ReleaseConsumerBelt =[pre CONSPERIOD] ;([CheckPosition4] ; [eval guard5] ;(guard5 -> [BeltOff] + notguard5 -> [branch]) ;[CheckPosition3] ; [pre !] ; k!pos3.p3 ; [post !] ;[eval guard6] ; (guard6 -> [BeltOn] + not_guard6 -> [branch]) ; idle) [> [approx CONSPERIOD]; [post CONSPERIOD] ; [jump] ; ConsumerBeltguard1 == P_p2 and P_belton guard2 == P_p1 and not (P_p2 or P_belton)guard3 == R_p2 guard4 == not R_p3guard5 == C_p4 and C_belton guard6 == C_p3 and not (C_p4 or C_belton)not_guardn == not guardn Fig. 6. Manufacturing Cell: Initial Task Stateon all paths � holds continuously for n time units. Theundecorated operators, 83 and 82 abbreviate 83<1 and82<1, respectively.TCTL is expressive enough to allow us to express mostsystem properties of interest. For example, a bounded re-sponse property can be easily stated,82(stimulus) 83�5response)which captures the requirement that after any occurrenceof a stimulus, a response will always happen within 5time units. Other useful properties such as bounded in-variance and bounded inevitability can be expressed justas easily.The region construction of [2] extends the possibility ofmodel-checking to systems with in�nite state spaces causedby the use of a dense time model. However our state spacesare in�nite because of the addition of in�nite data types,most notably the use of an unbounded queue to representthe messages pending transmission on a CAN channel. Wetherefore need to apply data abstraction techniques [8],[18], [11] to all of our data types in order to produce �-nite representations which still preserve the properties inwhich we are interested. An obvious abstraction for a CANchannel queue, for example, is to maintain only the latestmessage to be queued for each distinct message identi�er.

Since the set of message identi�ers for any channel is �-nite then the queues will be �nite. This not only accordswith most, if not all, existing implementations but also theapplication of the abstraction to the state space allows usto label those states, if any, in which duplicate messageidenti�ers occur. It is then easy to check for such dupli-cation, which may indicate an error condition such as theoverwriting of an active transmission message object or theinadvertent use of the same message identi�er by distinctnodes.In the case of the manufacturing cell, there are manyinteresting properties which can be checked. Brockmeyeret al. [6] suggest: \Does the robot process ever enter theprocessing phase when there is no item in position" and\Does an item ever wait in position 2 for more than 20 timeunits before being processed". If we use proposional labelsP P2 and R PROCESS to label those states in which an itemreaches position 2 and processing begins, respectively, thenwe can express the bounded response property in TCTL as:init) 82 P P2) 83<20 R PROCESSOther properties can be tested similarly. For example, thatthe belt is turned o� quickly enough when an item is de-tected at position 2; that the belt is not turned on whilethere is an item at position 2; that the robot begins pro-cessing only after capturing an item, and so on.



9An advantage of model-checking is that a partial set ofrequirements, such as this, can be tested independently andfailure traces obtained to aid debugging.IX. Conclusions and Further WorkThis paper describes ongoing work to provide a tool-supported engineering environment for the development ofdistributed embedded control systems. We believe thatCAN will be an important component in many such sys-tems because of its properties of robustness and predictabil-ity. We have therefore incorporated an abstraction ofCAN's broadcast communication protocol into an inte-grated formal model of system behaviour. This model isbeing used as the basis of the development of tools for sim-ulation, veri�cation and code generation. The main advan-tage of such an approach is that it facilitates a �ne-grainedanalysis of models which are abstractly related to the sys-tem implementation and which can be directly checked forcompliance with both temporal and functional speci�ca-tions.So far, investigation has shown that implementationsbased upon the MC68376 and CPU+82527 are amenableto the approach described. The implementation of multi-tasking is currently limited to preemptive time-slicedscheduling which allows an independent analysis to cal-culate the WCRT of all computations. Clearly there aresome systems for which this may make it di�cult occasion-ally to achieve the responsiveness that is required by sometasks; however, there are many for which this approach toscheduling is adequate. Future work will examine the ex-tension of our model to accomodate �xed priority preemp-tive scheduling. Such an extension is possible but leads toharder model-checking and may constrain further the sizeof systems which can be analysed automatically. As usual,there is a trade-o� to be made between the simplicity ofthe analysis and the sophistication of the implementation.An essential requirement to allow the development andanalysis of large-scale applications is for modular design,implementation and veri�cation. HL, in its extended form,permits the composition of system descriptions, allowingchannel sharing and the renaming of message identi�erswhere necessary. Inevitably, however, in general, compo-sition does not preserve all system properties when thecomposed systems broadcast on a shared channel. We arecurrently investigating the use of a form of rely-guaranteereasoning to allow the veri�cation of some properties ofcompound systems based only on the construction of mod-els of the components.Finally, we wish to investigate to what extent it is pos-sible and useful to develop an extended system model toreason about behaviour in the presence of network errors.References[1] J.R. Abrial. The B Book { Assigning Programs to Meanings.Cambridge University Press, 1996.[2] R. Alur, C. Courcoubetis, and D. Dill. Automata for modelling
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