
Xrma: An holistic approach to performance prediction of
distributed real-time CAN systems

William Henderson, David Kendall, Adrian Robson�and Steven Bradleyy
Abstract

Rate Monotonic Analysis (RMA) is a standard technique
for the analysis of task schedulability which has also suc-
cessfully been applied to the schedulability analysis of CAN
messages. The prediction of worst-case end-to-end re-
sponse times in a distributed CAN application requires the
integrated analysis of both tasks and messages - the so-
called “Holistic” approach. The work discussed in this
paper contributes to the practical application of an holis-
tic approach to analysis by: a) providing a framework for
describing distributed periodic systems as graphs of prece-
dence constrained tasks and messages, b) developing a tool
to automate the analysis and support systems design and, c)
validating the approach by empirical means. We describe
the analysis tool,X rma, and show how it supports the de-
sign and evaluation of distributed hard real-time systems.
The analysis of an example distributed control system com-
posed of multiple control/feedback loops is presented to il-
lustrate how the tool is used to verify that critical end-to-
end response times can be met by an implementation. To
verify the analysis, timing measurements have been con-
ducted on distributed control systems which use the Vx-
Works real-time kernel for task scheduling and CAN for
inter-processor communication. The empirical results con-
firm that the analytical approach allows reliable bounds to
be predicted for distributed responses in systems of practi-
cal complexity. However, it is shown that predicting tight
bounds requires the elimination of pessimistic properties of
distributed scheduling models.

1. Introduction

For economic or physical reasons many control systems
are implemented as decentralised systems with control pro-�William Henderson, David Kendall and Adrian Robson are with
the Department of Computing, University of Northumbria, New-
castle upon Tyne, UK., E-Mail: fwilliam.henderson, david.kendall,
adrian.robsong@unn.ac.uk.ySteven Bradley is with the Department of Computer Science, Univer-
sity of Durham,UK., E-Mail: s.p.bradley@durham.ac.uk.

cessors, actuators and sensors at widely different locations
- these are sometimes described as distributed data com-
munication and control systems (DDCCS). Such systems
require data (process variables, control signals and other
values) to be transmitted over networks [9]. This type
of control infrastructure is found in aircraft, manufactur-
ing plant, increasingly in automobiles and elsewhere. A
communications network (as opposed to dedicated point-
to-point wiring) introduces delays which may be variable if
the channel is shared between several control loops. Differ-
ent configurations are possible for decentralised control sys-
tems and network delays may be introduced once or a multi-
ple number of times in a closed loop. Control algorithms are
designed and implemented assuming a periodic behaviour.
Periodicity is important in achieving the required control
performance (rise time, overshoot, etc.) and in maintain-
ing stability [8]. There are strict deadlines placed on closed
loop response times which emerge from a control system
stability analysis [7]. In order to verify that a given control
hardware and software system is capable of providing the
required quality of control, a means of predicting end-to-
end response times is required. Preferably, this information
should be available at an early design stage.

An approach to the verification of end-to-end response
times for distributed real-time software systems is the so-
called holistic scheduling analysis proposed by Tindell [11].
Essentially, the technique utilizes scheduling models to pre-
dict worst-case task execution times on processors and mes-
sage queueing/transmission times on networks. Worst-case
end-to-end system response times are computed by adding
these individual delays on each resource. It is necessary in
the overall analysis to account for the fact that the portions
of a response that execute on processors or networks after
the first are not necessarily initiated periodically, Klein [6].

Results of an holistic analysis may be pessimistic (pos-
sibly very pessimistic) - computed response times may be
longer than any possible in a simulation or observed in em-
pirical behaviour. The reason for this pessimism is that the
direct application of scheduling analysis will assume that
interference can occur between all tasks scheduled on each
processor and between all messages scheduled on each net-

work - this may not be the case. If only one invocation of
an end-to-end response is underway at any one time, then
processors and networks are reused serially and some tasks
and messages cannot interfere.

The analytical inaccuracy resulting from pessimistic task
and message preemption is often tolerated because pre-
dicted “worst-case” responses are at least as long as any
exhibited by an implementation and might be regarded as
“safe” - at least the technique does not accept “bad” so-
lutions (system designs which cannot meet timing obliga-
tions). However, pessimistic performance predictions will
cause quite suitable implementations to be rejected and the
provision of needless CPU performance and network band-
width. Ideally, end-to-end responses should be computed
after taking into consideration pessimistic task and message
interference.

The availability of tools to support the analysis of sys-
tems is important since the numerical manipulation in-
volved in distributed scheduling is tedious and error prone.
Tools allow larger numbers of design alternatives to be in-
vestigated and provide additional benefits such as improved
management of the design process, data integrity checking
and automated presentation of results. A simple analytical
tool has been developed to support the analysis of single
processor and distributed real-time systems which is based
on the holistic scheduling approach.

In order to investigate the importance of pessimism in
scheduling models and improve our confidence in the anal-
ysis we have conducted measurements on distributed sys-
tems. We report here results of empirical work on sys-
tems implemented using the VxWorks real-time kernel for
task execution and CAN for inter-processor communica-
tion. The empirical results are compared with predictions
made using the scheduling analysis tool.

The remainder of this paper is organised as follows. Inx2 we present the semantics assumed for both task models
and inter-task message passing and inx3 describe the com-
position of end-to-end system responses as graphs of prece-
dence constrained tasks.x4 reviews the application of Rate
Monotonic Analysis to compute the performance of peri-
odic distributed systems andx5 describes theX rma tool
for automating the analysis. The approach is demonstrated
in x6 by deriving end-to-end response times for an exam-
ple distributed control system. The results of the analysis
are then compared with experimental measurements made
on the system. Finally,x7 presents the conclusions and de-
scribes further work.

2. The Semantics of System Models

The systems of inter-communicating tasks considered
here are constrained in their behaviour. In order to be
amenable to the Rate Monotonic approach, both tasks and

messages are periodic. Each task has associated with it a pe-
riod, a computation time, a jitter value and a blocking time.
The task period is a worst-case (minimum) inter-arrival in-
terval. The computation time is the time required to com-
plete the execution of a task assuming unrestricted access
to a processor. Jitter is a worst-case delay that a task may
suffer after the beginning of its period before it is available
for execution (placed in the run-queue) [1]. Blocking time
accounts for delays suffered by tasks when tasks of lower
priority access shared resources using the Priority Ceiling
Protocol [10].

Overheads due to preemption and implementation of the
scheduling strategy (context switching, etc) are evaluated
and included in the execution time of tasks. Since we are
considering distributed systems, tasks will communicate or
synchronise to meet end-to-end goals. Two mechanisms
for synchronous inter-task communication are considered -
tasks on the same processor communicate with the support
of kernel services and tasks on different processors commu-
nicate via a Controller Area Network (CAN) [5]. Messages
each have an associated period, a length and a jitter time.
The period of a message is inherited from the task which
transmits it. Thus, the late completion of a task will delay a
message it transmits. As with tasks, a message may inherit
a jitter value from hardware such as the network controller
or network software; this will represent the worst-case de-
lay suffered by the message. The blocking suffered by a
message is computed as part the scheduling analysis. The
inter-task communication semantics currently adopted are
as follows:� Tasks exhibit the following phases each time they exe-

cute (unless they are end-to-end terminals):

1. Initial communication (reception),

2. Computation period (no communication),

3. Final communication (transmission)� A task is scheduled for execution following the recep-
tion of an initial communication or is released by a
clock if it begins an end-to-end response.� A task can have only one direct predecessor task (or
none if it begins an end-to-end system response).� A task has one or more successor tasks (or none if it
terminates an end-to-end system response).

Broadcast communication semantics are assumed. Thus,
tasks cannot be blocked when they transmit a message,
more than one task may receive the same message and tasks
block on waiting for an initial message reception. Future
extension of these semantics will admit the possibility of
multiple direct predecessor tasks with AND or OR condi-
tions. These restrictions may appear quite limiting. How-
ever, complex systems can be designed by decomposing

tasks, for example, intermediate communication may be
modelled in this way.

3. Precedence Constraints and End-to-end
responses

Tasks may communicate (synchronise) with each other
in a restricted way by message passing. If tasks do commu-
nicate they are said to beprecedence constrainedin that a
task is blocked until it receives a message from a task which
precedes it. Timing obligations that a system must meet are
expressed as end-to-end requirements; these are simply se-
quences of constraints between tasks.P andN denote respectively sets of processors and net-
works in the system.T andM denote the sets of tasks and
messages in the system. On each processor is allocated a
set of tasks,Tp � T , for processorp and on each network
is allocated a set of messages,Mn � M, for networkn.
A system of precedence constrained tasks is conveniently
expressed in the form of a directed graph. ThePrecedence
Graph is an acyclic directed graphG(T ; C) in which T is
a set of tasks (vertices) andC a set of constraints (directed
arcs). Currently, the form of the precedence graph is re-
stricted to that of atree; i.e., tasks may have only one imme-
diate predecessor.Figure 1 illustrates a simple precedence
graph for a system comprising two processors, seven tasks
and a single network. The following graphical notation has
been used. Circular vertices represent tasks, rectangular
vertices represent terminals of end-to-end responses, solid
arcs represent precedence relationships between tasks and
dotted arcs identify the start and end tasks of end-to-end re-
sponses. The large rectangular regions represent processors
on which are scheduled the tasks they enclose. The graph is
annotated with the names of processors, tasks, precedence
constraints and end-to-end responses.

The control system behaves as follows: Periodically, a
process variable is measured at a remote sensor and the
value is transmitted over a network to a controller. The con-
troller computes a new control signal which is transmitted
to an actuator to maintain desired behaviour of a process
plant. The control processor also executes the tasksample
which polls an emergency signal and the taskalarm which
implements an emergency procedure.

An end-to-end response represents a transaction per-
formed by a system; it begins periodically or when the
system is stimulated by the environment and ends when
it makes a corresponding change in the environment. The
end-to-end response is effected by the execution of a num-
ber of precedence-constrained tasks scheduled on one or
more processors. We associate hard deadlines with each
end-to-end response, i.e., responses must complete before
their deadlines each time they are executed. There are two
end-to-end responses in the example system, namely:

 control_1

 plant_1

rx

regulate

Rx_p_1

sample

alarm

C_a_1

Alarm_1
[0,2913] us

rx

can_a[valve_1]

actuator

Rx_v_1

sensor

can_a[pressure]

Loop_1
[0,14982] us

Loop_1

Alarm_1

Figure 1. Task Precedence Graph

1. Loop 1 - The control loop - sample point to actuator change

2. Alarm 1 - The alarm system - alarm signal to alarm activation

4. Computing end-to-end response times

Computing worst-case execution times for end-to-end
responses essentially involves the traversal of precedence
graphs to sum the delays along each response. Tasks which
follow the initial task of an end-to-end response are periodic
in their average behaviour but will suffer variable delays in
their starting times. This is because later tasks in a response
will inherit the variable response times of earlier tasks. All
inter-task messages will also exhibit this behaviour since re-
sponses cannot begin with a message and will inherit a vari-
able delay from their transmitting task. Klein describes this
process in his handbook [6] and draws attention to the influ-
ence deferred execution has on the scheduling of tasks and
messages. For single processor systems, the task phasing
which results in the worst-case scheduling point is where

all tasks are released together. However, if task execution
is deferred because tasks are part of end-to-end responses,
tasks of lower priority on the same processor may suffer
additional delay.

Tindell[11] proposed a method of solving this problem
by including inherited delay times in the computation of
task and message response times. Because not all infor-
mation is available when computing response times on each
resource, the process has to proceed by iteration. On each it-
eration, the precedence constraints are applied in sequence.
For constraints involving kernel message passing, this en-
tails making the starting delay of the destination task equal
to the response time of the source task (recall that kernel
delays in message passing are included in task computation
times). For constraints involving network support, the start-
ing delay of the message is made equal to the response time
of the source task and the starting delay of the destination
task is made equal to the response time of the message. The
worst-case response times of each of a set of end-to-end re-
quirements is computed using the following algorithm:

InitialiseForConvergenceTest;
InitialiseTaskAndMessagesDelays;

\\ Iterate to convergence
while (!converged &&

responses <= deadlines) {
\\ Compute task and message response times

for (proc= 1; proc <= n_procs; proc++) {
ComputeTaskResponses(proc);

}
for (net= 1; net <= n_nets; net++) {
ComputeMessageResponses(net);

}
\\ Inherit delays

for (cons= 1; cons <= n_cons; cons++) {
message_delay(cons.net,cons.mess)=

task_response(cons.s_proc,cons.s_task)
task_delay(cons.d_proc,cons.d_task)=

message_response(cons.net,cons.mess)
}
check convergence of response times;

}

The convergence test is satisfied when all response times
are unchanged between iterations.

5. TheX rma toolkit

A software tool,X rma[3], has been developed to under-
take the holistic analysis outlined above. The tool accepts
system descriptions, displays system data, checks data in-
tegrity, analyses systems and computes end-to-end response
times. Results of the analysis can be presented to show
precedence graphs and end-to-end responses.Figure 2 pro-
vides a screen shot of the user interface. System descrip-
tions are prepared in text files which include the following
elements:

Figure 2. X rma user interface� Task assignment on processors including task period,
computation, jitter and blocking times� Message assignment on networks including message
period and length� Precedence constraints between tasks and messages� End-to-end requirements

Systems are input to the tool using the simple format il-
lustrated below.

PROC remote
TASK sample 100 10 50000 55 50000
TASK ...

PROC control
TASK rx 50 15 50000 47 0
TASK ...

NET net_a 500000
MESSAGE pressure 50000 2
MESSAGE ...

CON net1 remote sample net_a pressure control rx
CON ker1 control rx - - control regulator
CON ...

ETE Loop net1 ker1 10000

The keywordPROC introduces the name of a processor
and begins a block of task descriptions.TASK introduces a
task including its identifier followed by the computation, jit-
ter, period, blocking and deadline specified in�s. The dead-
line on the completion of a single task is usually not signif-
icant since it is part of a precedence constrained sequence
requiring the execution of several tasks.NET introduces a
CAN network name and speed (bits/s). This is followed by

a list of messages scheduled on that network.MESSAGE
is followed by an identifier for that message, its period and
length (bytes). Precedence constraints are introduced us-
ing CON followed by the identifier for that constraint and
the source processor and task identifiers, network and mes-
sage identifiers and lastly the destination processor and task
identifiers. Thus, constraints are specified in terms of previ-
ously defined tasks and messages. For constraints between
tasks on the same processor the network and message are
both indicated by “-”. Finally, end-to-end responses are
introduced usingETE and are expressed as sequences of
constraints. End-to-end responses also have identifiers and,
most importantly, deadlines.

6. An Example

This section illustrates the application of theX rma tool
to the analysis of an example control system to derive
worst-case bounds on distributed responses. Results of the
analysis are presented showing that bounds on worst-case
response times can be narrowed by recognising that cer-
tain task and message interference is impossible and that
scheduling models can be made less pessimistic. Finally, a
complementary empirical study of the same control system
is described. Empirical response times are compared with
computed results in an attempt to validate the analytical ap-
proach.

6.1. System Description

The example in question is of a somewhat simplified dis-
tributed industrial control system comprising two control
loops, as illustrated inFigure 3. The example system was
chosen for its scalability - an increasing network load may
be achieved simply by adding further control loops which
share the network. Each control loop involves two proces-
sors which communicate using a shared CAN bus. Proces-
sorscontrol 1 andcontrol 2 execute the following tasks:Tcontrol 1 = Tcontrol 2= frx; regulate; timer; sample; alarm; displayg
to support both a control behaviour and to implement a
safety protection and display system. Input and output op-
erations are performed remotely on the processorsplant 1
andplant 2 which execute the tasks:Tplant 1 = Tplant 2= ftimer; rx; sensor; actuateg
A single network,can a, transports four periodic messages:Mcan a = fpressure; valve 1; level; valve 2g

controll_1

alarm

rx

clock

12345display

regulate
timer

sample Tasks

Message passing

Input/output

rx

actuate

sensor

clock

timer

Pressure sensor

plant_1
Motor valve 1

plant_2

rx

sensor

clock

timer
actuate

Level detector

Motor valve 2

alarm

rx

clock

display

regulate
timer

sample
controll_2

Network - CAN

14573

Figure 3. Layout of the Example System

and operates at a speed of 72727 bits/s. The control loops
execute periodically (every 50 ms). A pressure (or level)
sensor is read by tasksensorwhich transmits a value over
the network in an 8-byte message. The message is re-
ceived by network taskrx making it available to the reg-
ulator taskregulatewhich computes a new control value
and then transmits it back to the plant processor. Taskrx
on the plant receives the message and makes the data avail-
able to taskactuatewhich outputs it to the process plant. In
addition to the control function, each control processor sup-
ports a user interface and alarm system. Tasksampleexe-
cutes periodically (every 20 ms) and samples values from a
command interface. Two further tasks,alarm anddisplay,
are subsequently executed. This system is described for the
purpose of input to theX rma tool by the following file:

// Example system - 2 closed-loops
// Time units - microseconds

// Tasks on Processor - controller
PROC control_1
TASK clock 147 0 16666 0
TASK timer 362 0 20000 0
TASK sample 819 0 20000 0
TASK alarm 961 0 20000 0
TASK display 879 0 20000 0
TASK rx 157 0 50000 0
TASK regulate 1461 0 50000 0

PROC control_2
... similar to control_1

// Tasks on Processor - plant_1
PROC plant_1
TASK clock 147 0 16666 0

TASK timer 362 0 50000 0
TASK rx 157 0 50000 0
TASK sensor 1181 0 50000 0
TASK actuate 1444 0 50000 0

PROC plant_2
... similar to plant_1

// The network
NET can_a 72727
MESSAGE pressure 50000 8
MESSAGE valve_1 50000 8
MESSAGE level 50000 8
MESSAGE valve_2 50000 8

// Constraints
CON C_n1_1 plant_1 sensor can_1 pressure

control_1 rx
CON Rx_p_1 control_1 rx - - control_1 regulate
CON C_n2_1 control_1 regulator can_a valve

plant_1 rx
CON Rx_v_1 plant_1 rx - - plant_1 actuator
CON C_a_1 control_1 sample - - control_1 alarm
CON C_d_1 control_1 sample - - control_1 display
... etc. for control loop 2 constraints

// End-to-end responses
ETE Loop_1 c_n1_1 Rx_p_1 C_n2_1 Rx_v_1 25000
ETE Alarm_1 C_a_1 5000
ETE Display_1 C_d_1 5000
... etc. for control system 2

All tasks other than the message reception tasks and the
timers were implemented by time-consuming loops which
did nothing useful. The computation times included in
the model were determined experimentally. Measurements
were made using a storage scope and simple software in-
strumentation under conditions in which each task was ex-
ecuted in isolation. The times include the overheads of im-
plementing the scheduling strategy (context switching, etc)
and inter-task message handling by the kernel. The small
measurement errors introduced by software instrumentation
were evaluated and execution times adjusted accordingly.
The error associated with task execution time measurement
is estimated to be�3%. In principle, it would have been
possible to determine task execution times by counting ma-
chine cycles. However, part of the “computation time” in-
cludes time lost in the kernel in scheduling and kernel mes-
sage queueing, etc. We did not have access to this code to
allow it to be timed by this method and so instead relied on
empirical means.

6.2. The Analysis

The example system of two control loops was analysed
first assuming that all tasks on a processor potentially could
interfere and all messages potentially could interfere ac-
cording to the normal priority preemptive scheduling strat-
egy. The results for this type of analysis are presented in
the column markednaı̈vein Figure 4. Evidently, the worst-

case execution time ofLoop 1 is about 20 ms - this is well
within the period of the response (50 ms). Note that the re-
sponsesLoop 1 andLoop 2 differ markedly; this is a result
of CAN message priority assignment: the two messages in-
volved in responseLoop 1 have a higher priority than for
Loop 2.

End-to-end naı̈ve �P1 �P1+2 �P1+2 �P1+2
Response �N1 �N1+2
Loop 1 20194 17015 16653 14865 14865
Alarm 1 3931 2241 2084 2084 2084
Display 1 4810 2159 2002 2002 2002
Loop 2 25556 22377 22015 18441 14865
Alarm 2 3931 2241 2084 2084 2084
Display 2 4810 2159 2002 2002 2002

Figure 4. End-to-end response times [�s]
The progress of end-to-end responseLoop 1 for the

naı̈ve analysis is illustrated inFigure 5 indicating
the execution sequence of tasks and messages. For
each task/message, the dark region indicates the execu-
tion/transmission time and the light region the worst-
case delay before execution/transmission. The notation
control[alarm] means taskalarm executing on pro-
cessorcontrol. Note that the chart indicates that all tasks
and messages comprising the response may be delayed be-
fore they execute.

Figure 5. End-to-end response - Loop 1 - naı̈ve
analysis

Many tasks on each of the processors and some messages
are serially constrained; this can be utilised in optimising
the analysis. Four opportunities for optimising distributed
scheduling models are listed inFigure 6. The transforma-
tions are applied by searching precedence graphs for pro-
cessor or network reuse on each end-to-end response and
testing for certain periodic constraints [2]. For example, the�P1 transformation is applicable if the end-to-end response
time is less than the period of the response, i.e., only one
such response may be in progress at any time. Tasks which

Trans Context�P1 Interference between tasks executed at different
points in the same end-to-end response which also
share the same processor�P2 Interference suffered by tasks executed at
different points on the same end-to-end response
from other tasks executed on the same processor.�N1 Interference between messages which are transmitted
at different points on the same end-to-end response
and on the same network�N2 Interference suffered by messages transmitted at
different points in the same end-to-end response
from other messages transmitted on the same network.

Figure 6. Optimising transformations

are executed on the same processor at different points in
an end-to-end response cannot interfere if this is the case,
and the analysis of response times of tasks in the response
can be optimised. The transformation is implemented us-
ing the analysis tool by defining “interference sets” for each
task which reflect the interference possible on that resource;
these are subsets of the complete task set. The system was
analysed after applying these transformations cumulatively
and in sequence, the results of which appear in columns
3,4,5 and 6 ofFigure 4. The degree of pessimism inherent
in the original analysis is apparent. For example, response
Loop 2 is overestimated by 70% andDisplay 1 by 140% by
the naı̈ve analysis. The network scheduling optimisations,�N1 and�N2, do not benefit the responsesAlarm 1, Dis-
play 1, Alarm 2 or Display 2 since these responses do not
involve inter-processor message passing. The progress of

Figure 7. End-to-end response - Loop 1 - opti-
mised analysis

end-to-end responseLoop 1 for the fully optimised analy-
sis is illustrated inFigure 7 showing the the reduced inter-
ference following optimisation. On some resources (e.g.,
plant 1) tasks cannot be delayed, on others (e.g., control1)
tasks suffer reduced interference and on the network, mes-
sage queueing time is substantially reduced.

6.3. Empirical Study

A complementary empirical study was undertaken to val-
idate the distributed scheduling analysis and to evaluate the
importance of optimisation in the development of accurate
scheduling models. The experimental systems were imple-
mented using four M68306 micro-controllers and a single
CAN network; hardware and software used are listed in
Figure 8. The Motorola MC68306 microprocessor was se-

Micro-controllers Motorola 68030
Fieldbus CAN
Network controllers Intel 82527 [4]
Network speed and length 72727 bits/s and 20 m
Download from host Ethernet
Software timing Motorola 68230 PI/T
Backplane bus VME
Real-time kernel VxWorks 5.1 [12]
Development language C - GNU cross-compiled
Development platform DEC Alpha

Figure 8. Experimental hardware and soft-
ware

lected because it possesses a simple architecture with no
data/instruction cache and no vector pipeline - this facil-
itated the accurate and repeatable determination of code
execution times. Inter-task synchronisation between tasks
on the same processor was implemented using message
queues. Tasks which received CAN messages were imple-
mented as CAN controller interrupt handlers. The two end-
to-end responsesLoop 1 andLoop 2 were instantiated pe-
riodically on theplantprocessor by timer interrupt handlers
(these are the tasks namedtimer).

The durations of end-to-end responses were determined
using a 68230 Peripheral Interface and Timer. The local
clock rate of the timer limited the accuracy of time mea-
surement to�4�s. It was found necessary for the duration
of each experiment to prevent interrupt generation by the
Ethernet interface. Without this precaution, the measured
control loop response times exhibited large random varia-
tion. A further source of interrupts from outside the con-
trol system was that of the VxWorks system clock. The
clock period was set to160 for all experiments; no use was
made of the system clock in determining time delays. The
time lost in updating the system clock was measured to be147�s � 15�s and the impact of this regular interrupt on
the system was modelled inX rma as a high-priority task,
clock. If each of the control loop processors kept perfect
time, the messages might never interfere (depending on the
starting instances). In fact, the range of clock periods char-
acteristic of crystal clocks means that the control loopsdid
interfere occasionally. However, to improve the chance of
interference (and the opportunity of recording worst-case
response times) the period of one of the loops was increased

by 0.08% to50040�s. With this adjustment, network inter-
ference occurred with a period of about one minute.

Figure 9 illustrates a single execution of a control loop
as two traces captured using a storage scope. The upper
trace is the CANH signal on the bus and the signal in the
lower trace was asserted at the beginning of the response
and cleared at the end. This shows the software delays on
theplantandcontrolprocessors and the transmission of the
CAN pressureandvalvemessages. Following an experi-

Figure 9. CAN signal and response execution
for a control loop

mental run involving many control loop executions, the data
collected at eachplant processor was downloaded to the
host for future analysis. The results presented are those for
experimental systems which were executed for 4000 con-
trol cycles for bothLoop 1 andLoop 2. Figure 10 illus-
trates some the results obtained -Loop 1 response times for
each of 4000 control cycles. Note that many responses are
clustered at about7800�s and that responses as great as13184�s were observed. For about 50% of the control cy-
clesLoop 1 suffered no interference and completed in the
minimum time. The remaining control responses suffered
additional delay resulting from task and message interfer-
ence. The regular delay of about3 ms resulted from in-
terference from taskssample, alarm anddisplay. The in-
terference pattern of three repeating 1.5 ms delays resulted
from network interference. About half-way through the
run, these two sources of interference conspire to cause the
worst-case delay observed during the run.

6.4. Discussion of the Results

Figure 11 shows theLoop 1 probability density graph
computed from the experimental results using a bin size of

Set bit in ICR of 306 to enable VIRQ3
Plant
ID_feedinitialback_message: 0
ID_control_message:1
Clock period: 50000us
samples: 4000

7748
7728
7748
7752
7756
7756
7732
7732
7740
7740
7740
7744
7744
7748
7744
7748
7752
7752
7752
7748
7732
7736
7732
7740
7740
7740
7740
7744
7748
7728
7728
7752
7756
7732
7732
7736
7740
7740
7740
7744
7744
7724
7744
7748
7752
7752
7752
7732
7732
7732
7728
7748
7752
7752
7728
7752
7748

6000

7000

8000

9000

10000

11000

12000

13000

14000

1 501 1001 1501 2001 2501 3001 3501

Control cycle - Loop_1

R
es

po
ns

e
tim

e
-

[u
s]

Figure 10. Computed response times for
Loop 1 - [�s]

100�s to which has been added for comparison all com-
puted response times. It is apparent that a naı̈ve analysis
grossly overestimates the worst-caseLoop 1 response time
by a factor of about 50%. As the pessimism is removed
from the analytical scheduling model, the computed re-
sponse times approach the worst-case empirical value. The
analysis assumes worst-case transmission times for mes-
sages; this is unlikely in practice since messages may not
suffer the worst-case bit-stuffing. The range in message
transmission times for an 8-byte message at a bit rate of
72727 bits/s is[1527; 1788]�s. With the particular identi-
fier and data fields used, message transmission times were
approximately1758�s, i.e., 30�s shorter than the worst-
case. Taking this, more accurate, value for transmission
time into account, the overestimation of the analytical re-
sponse time is about1620�s (an error of about 12%) which
is approximately equivalent to a single network transmis-
sion time. The most optimised analytical model assumed
that both messages on a control cycle may suffer interfer-

7748
7744
7744
7748
7748
7744
7744
7744
7744
7740
7740
7740
7740
7740
7712
7728
7748
7732
7732
7752
7728
7728
7728
7732
7728
7750
7752
7752
7756
7732
7738
7748
7748
7744
7744
7744
7740
7744
7740
7744
7740
7740
7740
7740
7740
7736
7736
7736
7736
7728
7728
7728
7732
7728
7728
7756
7756
7752
7752
7748
7752
7744
7748

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Time - [ms]

p(
R

lo
op

_1
)

Analytical
Results

Experimental
Results

Naive
Analysis

ΓP1

ΓP1+P2

ΓP1+P2, ΓN1

Figure 11. Probability density of empirical re-
sponse times and analytical results for Loop 1

ence; this was not observed analytically. Either further op-
timisation is possible (and two message collisions cannot
occur), or the experiments did not present the conditions
which would have caused the worst-case response times.

7. Conclusions and further work

This paper has described a simple Rate Monotonic Anal-
ysis tool to support the design of periodic distributed real-
time systems. This is part of an ongoing project to pro-
vide better tool support for distributed real-time system de-
sign. The example has demonstrated that distributed rate
monotonic scheduling potentially is capable of predicting
accurate end-to-end response times. The good agreement
between analytical and empirical response times improves
our confidence in the value of the analysis. However, op-
timisation of the scheduling model is vitally important if
tight bounds are required and this is especially the case for
distributed systems. An outcome of a pessimistic analysis

is that it may cause the rejection of models (and therefore
implementations) which are able in fact to meet their timing
obligations.

The probability of experiencing the worst-case delay for
a distributed response in an experiment may be very low.
Many of the experiments failed to detect important inter-
actions between system components which would lead to
longer response times. Notwithstanding this limitation in-
herent in the empirical approach, such work is valuable in
guiding the direction of analysis and improving confidence
in computed results.

Further areas of development within this project include
the definition of improved optimisation techniques and the
verification that they can successfully be applied in larger
systems. It is expected that the semantics of inter-task com-
munication will be made more general to permit multiple
immediate predecessors for tasks. This will allow the mod-
elling of a wider range of systems. Also of interest are
the integration into the analysis of hardware delays and the
computation of both worst-case and best-case performance,
i.e., both upper and lower bounds on response times.

References

[1] C. J. Fidge. Real-Time Scheduling Tests for Preemptive
Multitasking. Real-Time Systems, 14:61–93, 1998.

[2] W. D. Henderson. Optimising transformations of holis-
tic RMA scheduling models and their application in Xrma.
Technical Report NPC-TRS-98-2, University of Northum-
bria, Department of Computing, 1998.

[3] W. D. Henderson. The Xrma Toolkit. Technical Report
NPC-TRS-98-1, University of Northumbria, Department of
Computing, 1998.

[4] Intel Corp.82527 Serial Communications Controller Archi-
tectural Overview - Order no. 272410-002, February 1995.

[5] ISO. 11898 - Road Vehicles - interchange of digital infor-
mation - controller area network (CAN) for high-speed com-
munication, 1st edition, 1993.

[6] M. A. Klein. A Practitioner’s Handbook for Real-Time
Analysis: A Guide to Rate Monotonic Analysis for Real-
Time Systems. Kluwer, Boston, 1993.

[7] R. Krtolica. Stability of linear feedback systems with ran-
dom communication delays.Int. J. Control, 59:925–953,
1995.

[8] U. Ozguner. Problems in implementing distributed control.
In Proceedings of the American Control Conference, pages
274–279, 1989.

[9] A. Ray. Distributed Data Communication Networks for
Real-Time Process Control.Chemical Engineering Com-
munications, 65:139–154, 1988.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheri-
tance Protocols: An Approach to Real-Time Synchronisa-
tion. IEEE Transactions on Computers, 39(9):1175–1185,
1990.

[11] K. Tindell and J. Clark. Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems.Microprocessors and
Microprogramming, 40:117–134, 1994.

[12] Wind River Systems Inc.VxWorks Programmer’s Guide 5.1,
December 1993.

