
The International Journal of Time-Critical Computing Systems, 20, 5–25, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Improving the Accuracy of Scheduling Analysis
Applied to Distributed Systems
Computing Minimal Response Times and Reducing Jitter

WILLIAM HENDERSON william.henderson@unn.ac.uk
School of Computing and Mathematics, University of Northumbria, Newcastle upon Tyne, UK

DAVID KENDALL david.kendall@unn.ac.uk
School of Computing and Mathematics, University of Northumbria, Newcastle upon Tyne, UK

ADRIAN ROBSON adrian.robson@unn.ac.uk
School of Computing and Mathematics, University of Northumbria, Newcastle upon Tyne, UK

Abstract. A well-established approach to the verification of end-to-end response times for distributed, hard real-
time systems is an integrated scheduling analysis of both task processing and message communication. Hitherto,
published analyses have been confined to the computation of worst-case bounds only and best-case response
times have been ignored, assumed to be zero or treated approximately. However, there are compelling reasons
for computing both upper and lower bounds on response times, not only to allow the verification of best-case
performance but also to improve the accuracy of the overall analysis. This paper describes a precise best-case
execution time analysis which reduces jitter and extends distributed scheduling analysis to yield more accurate
upper and lower bounds on system response times. The analysis is combined with existing results for worst-case
responses in a single scheduling algorithm to compute both upper and lower bounds on end-to-end response in
distributed systems.

A design tool has been developed to automate the analysis and support the performance verification of diverse
real-time systems composed of tasks executing on multiple processors which communicate using the Controller
Area Network (CAN) fieldbus.

Keywords: real-time, scheduling, distributed systems, controller area network, best-case analysis, end-to-end
responses

1. Introduction

For economic imperatives or because of physical constraints, many control systems are
decentralised with actuators, sensors, control and other processors at widely different
locations—these are sometimes described as distributed data communication and control
systems (DDCCS). Such systems require data (process variables, control signals and other
values) to be transmitted over networks (Ray, 1988). This type of control infrastructure
is found in aircraft, manufacturing plant, increasingly in road vehicles and elsewhere. A
communications network (as opposed to dedicated point-to-point wiring) introduces delays
which may be variable if the channel is shared between several control loops. Different
configurations are possible for decentralised control systems and network delays may be
introduced once or a multiple number of times in a closed loop. Control algorithms are
designed and implemented assuming a periodic behaviour. Periodicity is often important in
achieving the required control performance (rise time, overshoot, etc.) and in maintaining

6 HENDERSON, ET AL.

stability (Őzgűner, 1989). There are strict deadlines placed on closed loop response times
which emerge from a control system stability analysis (Krtolica et al., 1994). In order
to verify that a given control hardware and software system is capable of providing the
required quality of control, a means of predicting end-to-end response times is required.
Preferably, this information should be available at an early design stage.

An approach to the verification of end-to-end response times for distributed real-time
software systems is the holistic scheduling analysis proposed by Klein (Klein et al., 1993)
and Tindell (Tindell and Clark, 1994). The technique has been used to predict worst-case
performance of periodic distributed systems composed of task sets scheduled on one or
more processors and in which tasks synchronise and communicate by message passing
supported by kernels and/or networks. The aim of such analysis is to compute time bounds
on system responses and thereby verify that important performance deadlines can be met
by an implementation. Essentially, the technique utilises scheduling models to predict
worst-case task execution times on processors, and message queue and transmission times
on networks. Periodic system transactions are defined as precedence constrained tasks and
messages which are executed in sequence. Worst-case response times for transactions are
computed by summing individual task and message response times. It is necessary in the
overall analysis to account for the fact that portions of a response executed on processors
other than the first are not necessarily initiated periodically but exhibit jitter in their release
times (Klein et al., 1993).

Prior to recent work of Guti´errez (Gutiérrez et al., 1998), published results on integrated
scheduling analysis has been limited to the computation of worst-case response times for
transactions. Thus, end-to-end responses have been computed assuming worst interference
conditions between tasks on processors and messages on networks. Additionally, jitter, the
variation of response time, has been pessimistically computed by assuming that the best-
case response times are zero. This has lead to an overestimation of worst-case end-to-end
response times in previous analysis because jitter in high priority transactions extends the
response time of low-priority transactions. For many real-time systems, hard deadlines may
be adequately expressed in terms of worst-case behaviour. However, there are situations
where this is not the case and it is necessary also to predict best-case performance. In
process control it is often required to perform certain operations periodically at exactly
defined instants (Colnariˇc et al., 1998). Suppose that a control task were required not only
to output its computed response prior to its next period, but must output it exactly 95ms
after the availability of the input value (perhaps within, say,±1 ms). Providing this level of
assurance for control systems which involve scheduling tasks for such operations asprocess
sampling, regulationandoutputwithin a distributed environment is challenging. Clearly,
any analysis performed on such systems (to predict performance bounds) must be capable
of delivering both upper and lower bounds on response times for critical transactions.

This paper extends integrated scheduling analysis to allow the computation of both worst-
and best-case transaction response times. The evaluation of best-case performance facil-
itates a more accurate calculation of task and message jitter (variability in response time)
than has hitherto been possible. This in turn allows computed bounds to be tightened on
transaction responses which results in a less pessimistic evaluation of response times. To
enable transaction bounds to be computed it is necessary to evaluate both worst- and best-

IMPROVING THE ACCURACY OF SCHEDULING 7

case task and message response times; expressions have been derived for the particular
conditions of:

— Software task scheduling on processors using the fixed-priority preemptive policy

— Message transmission on Controller Area Networks (ISO, 1993) assuming fixed priority
assignment and non-preemptive scheduling

The remainder of this paper is organised as follows. Section 2 introduces the computa-
tional model assumed for tasks, messages and their system compositions. We also make
explicit the rôle played by jitter in distributed real-time systems and its treatment in our
model. Section 3 reviews the established analysis of task and message scheduling for com-
puting worst-case bounds on response times and §4 presents a complementary analysis of
best-case bounds. Section 5 summarises the computational model and presents an algo-
rithm to compute bounds on system transactions for diverse distributed real-time systems.
Finally, §6 reviews the work, presents some conclusions and describes a programme of
further work.

2. Computational Model and Assumptions

Distributed systems we consider are compositions of tasks scheduled on processors and
messages scheduled on Controller Area Networks. Both tasks and messages are statically
allocated to resources and, in order that they are amenable to a simple scheduling analysis,
they are periodic or sporadic (have minimum inter-arrival times).

2.1. Tasks and Scheduling

The notation adopted to define task sets is as follows. LetP be a set of processors, andn
be the total number of tasks in the system. Tasks are identified by an integer in the range
1 . . .n. The task set,T , is defined as

T =
{
(Ti ,C

↓
i ,C

↑
i , πi , pi) | 1≤ i ≤ n

}
where Ti is the period of taski , C↓i and C↑i are respectively the best- and worst-case
computation times of the task,πi is its priority andpi ∈ P is the processor to which taski
is allocated. The superscripts↓ and↑ denote respectively lower and upper values. The set
Tp of tasks allocated to the processorp ∈ P denotes the set{τi ∈ T | pi = p}

Tasks are scheduled according to the fixed-priority preemptive policy in which priorities
are totally ordered. A taskarrives infinitely often at the start of its period at which point
it is logically ready to be scheduled for execution. However, a task may suffer a delay
following arrival before it isreleasedand can be entered into a priority ordered run queue
(see Fidge (1998) for a comprehensive review of the semantics of task scheduling). This
delay, calledrelease jitter, is the maximal difference between arrival time and release time;
it results from variations in response times of tasks and messages which precede the given

8 HENDERSON, ET AL.

task in an end-to-end transaction (jitter is discussed in greater detail in section 2.4). Our
model allows tasks to be triggered by clock, interrupt or by the arrival of a message handled
by the real-time kernel:

Periodic release by clock — These tasks have periods which are integer multiples of the
kernel clock tick. Thus, the arrival of a task will coincide with the servicing of a
real-time clock at which point it will be entered into a priority ordered run queue and
executed when it becomes the highest priority task. Such tasks are released on arrival
at the beginning of their periods.

Periodic interrupts — An interrupt may be raised by an external device or perhaps the
arrival of a network message. The processing of interrupts is assumed to be hardware
prioritised and all such tasks have higher priorities than periodic clock tasks. The
interrupt task is released immediately since it must possess the highest priority but it
may be preempted by the arrival of higher priority interrupt task(s).

Periodic messages handled by the kernel— A task waiting on a kernel message (sent by
another task on the same processor) arrives at the beginning of its period and is released
some time later following the jitter inherited from predecessor tasks/messages.

This assumed scheduling and interrupt behaviour matches that supported by popular real-
time kernels and processors (e.g., VxWorks (Wind River Systems, 1993) and 68000 CPU)
and provides timely execution of sporadic, high priority, interrupt-driven tasks and restricted
periodic behaviour for other tasks.

We exclude the possibility that the execution of multiple instances of a task can be
underway, i.e., tasks must complete before their next arrival. When a task is preempted
by the arrival of a higher priority task, the current task is switched for the higher priority
task; the real-time kernel performs a context switch within the interval [C↓cs,C

↑
cs]. Thus,

the context switching overhead for a single preemption by a higher priority task is 2C↑cs in
the worst case; i.e., one context switch to start the higher priority task and another on its
completion. The restricted semantics of task execution adopted here is as follows:

— Tasks progress through the following phases each time they execute:

1. Initial communication (reception),

2. Computation period (no communication),

3. Final communication (transmission).

— A task arrives (and subsequently may be scheduled for execution) following the recep-
tion of its initial communication or is released by a clock if it is the initial task of a
transaction.

— The last task in a transaction has no final communication phase.

IMPROVING THE ACCURACY OF SCHEDULING 9

2.2. Inter-Task Communication

Two mechanisms for inter-task communication are considered - tasks on the same processor
communicate with the support of kernel services and tasks on different processors commu-
nicate via one or more Controller Area Networks (CAN) (ISO, 1993). LetN be a set of
networks, andm be the total number of messages in the system. Messages are identified
by an integer in the range 1. . .m. The message set,M, is defined as

M = {(Ti , Si , πi ,qi) | 1≤ i ≤ m}

whereTi is the period of messagei , Si is its length,πi is its priority andqi ∈ N is the
network to which messagei is allocated. The setMq of messages allocated to the network
q ∈ N denotes the set{µi ∈M | qi = q}. The period of a message is inherited from the
task which transmits it. Tasks may communicate with each other in a restricted way by
asynchronous message passing. Broadcast communication semantics are assumed: tasks
cannot be blocked when they transmit a message and more than one task may receive the
same message.

2.3. Precedence Constraints and Graphs

If tasks do communicate they are said to beprecedence constrainedsince a task is blocked
until it receives a message from a task which precedes it. Currently, a task can have only
one direct predecessor task (or none if it begins an end-to-end system response) and may
have one or more successor tasks (or none if it terminates an end-to-end system response).
Future extension of these semantics will admit the possibility of multiple direct predecessor
tasks with AND or OR conditions.

A system of precedence constrained tasks is conveniently expressed in the form of a
directed graph. ThePrecedence Graphis an acyclic directed graphG = (V, E) where the
set of verticesV = T ∪M is composed of tasks and messages, and the set of edges,E ,
giving the precedence constraints between them, is defined:

E = {(v1, v2) | v1 ∈ V, v2 ∈ V}

It is required that #{v | (v, v′) ∈ E} ≤ 1 for all v′ ∈ V . Currently, tasks may have only
one immediate predecessor and the form of the precedence graph is restricted to that of
a tree. Each sub-graph is a continuous chain of precedence related tasks which repre-
sents an end-to-end transaction of the system. Vertices in sub-graphs may share resources
(processors, networks) with vertices in other sub-graphs. Figure 1 illustrates a precedence
graph for a small system comprising two processors, 7 tasks and two messages transmit-
ted on a single network. The accompanying key defines the graphical notation adopted
to represent tasks, messages, processors, networks, constraints and transaction terminals.
The large rectangular regions represent processors/networks on which are scheduled the
tasks/messages they enclose. The control system behaves as follows: periodically, a pro-
cess variable is measured at a remote sensor (tasksensor) and the value is transmitted over

10 HENDERSON, ET AL.

Figure 1. A precedence graph.

a network to a controller (taskregulate). The controller computes a new control signal
which is transmitted to an actuator (taskactuate) to maintain desired behaviour of a process
plant. The control processor also executes the tasksamplewhich polls an emergency signal
and the taskalarm which implements an emergency procedure. The messagesvalve1
and pressureare transmitted on the networkcan a to communicate sensor and control
data.

Tasks and messages constituting an end-to-end transaction have equally long periods
but are shifted relative to one another. We associate hard deadlines with each end-to-end
response; transactions must complete within their deadlines each time they execute. Let
G = (V, E) be a precedence graph. A full pathp = v0, v1, . . . , vn is a sequence of vertices
such thatv0 is an initial vertex andvn is a terminal vertex and(vi , vi+1) ∈ E for 0≤ i < n.
A transactiont = (p, D↓, D↑) is a tuple wherep is a full path andD↓, D↑ give the bounds
on the completion time. The vertexv ∈ V is an initial vertex if #{v′ ∈ V | (v′, v) ∈ E} = 0,
andv ∈ V is a terminal vertex if #{v′ ∈ V | (v, v′) ∈ E} = 0. A deadline is measured
from the beginning of the period of the initial task (its arrival) to the completion of the
computation of the last task. There are two end-to-end transactions in the example system
of Figure 1, namely:

Loop 1 — The control loop—sample point to actuator change
Alarm 1 — The alarm system—alarm signal to alarm activation

IMPROVING THE ACCURACY OF SCHEDULING 11

2.4. Response Times and Jitter

As a result of interference, the response times of tasks will vary from one period to the
next as will the response time of messages sharing a single network. In periodic distributed
systems, transactions composed of precedence constrained tasks and messages will begin
periodically. However, messages and tasks other than the first in a transaction will suffer
variation in release time since they will inherit variations in response time (jitter) from
predecessor tasks and messages. This range in response times will be bounded by the ac-
cumulated maximum interference suffered by tasks or messages on each resource (Fidge,
1998). Since the presence of jitter lengthens the worst-case response times of lower pri-
ority tasks and messages, it is desirable that jitter is not computed pessimistically. Three
approaches to distributed real-time systems scheduling have emerged which differ in their
treatment of jitter, namely:

Full Period Per Resource: — A full period may be reserved for the execution of each por-
tion of a transaction on each resource (Sha and Sathaye, 1993). This technique solves the
problem of accumulating jitter by simply delaying responses at each resource until the
beginning of a new period. Data must be buffered on arrival at a resource and processed
at the beginning of the next period. This allows processor and network scheduling to
be analysed independently but at the expense of what may be a considerable increase
in end-to-end transaction response time. The variation in completion time (completion
jitter) of each transaction will be reduced by this method since jitter of a transaction
will be introduced only on the last resource.

Task Offsets: — The execution of a transaction at each processor by a sequence of prece-
dence constrained tasks may be achieved by introducing time offsets for each task after
the first (Audsley and Burns,1998; Bate and Burns, 1997). Thus, thenth instance of a
taski arrives at a timen Ti + Oi whereOi is the offset for that task. This avoids the
accumulation of jitter from one resource to the next for distributed transactions if task
offset values are chosen such that they are greater than worst-case response times of
the event triggering the task. The use of offsets can increase utilisation of resources
since task arrival times can be managed to reduce interference. However, the analysis
is complex and tasks with co-prime periods cannot benefit from the approach (Bate
and Burns, 1998). Like the “Full Period Per Resource” technique, kernel support and
a global clock are required to implement offsets.

Inherited Jitter: — Perhaps the simplest approach that may be adopted is to schedule a
task or message to arrive as soon as its predecessor task/message has completed. The
major disadvantage of this technique is that jitter accumulates from one resource to the
next in the course of executing a transaction and the completion time of a transaction may
exhibit intolerable jitter. However, the approach will guarantee the shortest possible
transaction times since transactions are not delayed at resources and is the easiest to
implement in practice - it requires no special real-time kernel features or global clock.
The analysis described in this paper assumes the “Inherited Jitter” model; this is now
described in further detail.

12 HENDERSON, ET AL.

Figure 2. Jitter and precedence constrained tasks.

Figure 2 illustrates the progress of the transactionLoop 1 illustrated in Figure 1. Each
task or message of a transaction will have a variable response time since it may suffer
preemption by higher priority tasks/messages. This variable response time of each stage in
a transaction contributes an element of jitter towards the jitter in the complete transaction.
We shall distinguish betweenlocalandglobaltask/message response times. Local response
times (denoted byri for task or messagei) are simply the response times of tasks or messages
measured from the local arrival times at each resource (at the beginning of a period). The
global response timeRi of a task or messagei in a transaction is measured from the beginning
of the complete transaction. Thus, the global best- and worst-case response times at any
point are:

R↓i = R↓i−1+ r ↓i and R↑i = R↑i−1+ r ↑i

wherer ↓i andr ↑i are respectively the best- and worst-caselocal response times of the task or
message,Ri−1 is the global response time of the predecessor task or message andR0 = 0.

2.5. Computation of Jitter

It is usually assumed in the analysis of distributed responses (Klein, Lohoczky, and Ra-
jkumar, 1994; Larsson, 1996; Tindell and Clark, 1994; Tindell and Hanson, 1995) that the
release jitter of a task or message is the worst-case response time of the task or message
which preceded it, i.e., that the best-case response time of a predecessor task or message

IMPROVING THE ACCURACY OF SCHEDULING 13

is assumed to be arbitrarily small (zero). This simple evaluation of jitter may therefore be
expressed:

Ji = R↑i−1 or Ji =
∑

j∈{1...i−1}
r ↑j

Such an assumption is unlikely to be the case for any practical system because the minimum
response time of a message is at least its data transfer time and the minimum response time
of a task is at least its minimum computation time. The approximate treatment of jitter
can lead to significant error in the calculation of lower priority transaction bounds since
the jitter inherited by a task or message affects the computation of response times of lower
priority tasks and messages. As will be demonstrated in §3, increasing jitter tends to widen
the response time bounds of lower priority tasks, i.e., the best-case response is reduced and
the worst-case response is increased. It is important that accurate estimates of jitter are
used in computing the response times at each resource since jitter may increase rapidly with
each additional precedence step in a transaction. This factor has been shown by simulation
to be an important contributor to the pessimistic calculation of response times (Bate and
Burns, 1998). The simple calculation of jitter will often result in the pessimistic evaluation
of interference to lower priority tasks and therefore erroneous worst-case response times.
The release jitterJi of a task or messagei (the maximum variation of its release time) is
more accurately computed by:

Ji = R↑i−1− R↓i−1 (1)

or may be expressed as the sum of the differences between local best- and worst-case
response times prior to that task/message:

Ji =
∑

j∈{1...i−1}
(r ↑j − r ↓j) (2)

where the indexj ranges from the first task in the transaction to the task/message immedi-
ately precedingi . We compute both upper and lower bounds on response times and adopt the
more accurate evaluation of jitter in the work reported here. The values of Jitter and global
response times areboundary conditionsimposed on the scheduling analysis on different
processor/network resources. Systems which are likely to benefit from the more accu-
rate calculation of jitter are those in which high priority tasks/messages suffer significant
jitter—sufficient to contribute towards the preemption of lower priority tasks/messages.
Since jitter in high priority tasks/messages potentially widens the response time intervals
of lower priority tasks/messages, it can significantly increase jitter in the system as a whole.

3. Worst-Case Analysis

The analyses of worst-case fixed priority pre-emptive scheduling of tasks and worst-case
message scheduling on a CAN are well known; we will simply state the principal results of
previous analyses.

14 HENDERSON, ET AL.

Figure 3. The calculation of worst-case task response time.

3.1. Computing Worst-Case Task Response Times

The scheduling analysis used to derive worst-case response times of fixed priority periodic
tasks preemptively scheduled is described by Audsley (Audsley et al., 1993) and others,
(Burns, 1991; Warren, 1991; Klein et al., 1993; Klein et al., 1994). The worst-case response
time of a task is computed assuming that it is released at the same instant as all higher priority
tasks—this is known as the “critical instant”. Figure 3 illustrates the preemption suffered
by a taski from a higher priority taskj . If the worst-case computation timeC↑i is short,
task i may only suffer a single preemption from taskj —as illustrated in Figure 3A. If
task j suffers release jitter, depicted in Figure 3B, this reduces the time available for task
i to complete without additional preemptions. Figure 3C shows the situation where the
computation time for taski is longer and it suffers 2 preemptions as a direct result of jitter
of task j . The local, worst-case, response timer ↑i of a taski which is subject to interference

IMPROVING THE ACCURACY OF SCHEDULING 15

from higher priority tasks in the sethp(i)may be expressed in the following iterative form:

r ↑∗i = C↑i +
∑

j∈hp(i)

⌈
r ↑i + Jj

Tj

⌉
C↑j

where the newly computed response time,r ↑∗i , replacesr ↑i on each iteration,Tj andJj are
respectively the Period and Jitter of taskj . Note that the expression must be iterated until
convergence (r ↑∗i = r ↑i) or the task is deemed unschedulable (r ↑i ≥ Ti). An initial response
time,r ↑i = Ci , may be assumed.

Finally, it is necessary to account for the time spent in context switching between the
execution of different tasks. LetC↑cs be the worst-case time delay in performing a context
switch. Each time a task is preempted by a higher priority task, two context switches
may occur—the first to suspend the current task and a second to resume it following the
preemption. The response time of a task also includes initial and final context switch times.
Thus, the response time expression may be modified as follows to account for context
switching (Burns and Wellings, 1995):

r ↑∗i = C↑i + 2C↑cs+
∑

j∈hp(i)

⌈
r ↑i + Jj

Tj

⌉
(C↑j + 2C↑cs) (3)

Some initial or final context switching delays may be omitted from equation 3. A task
makes available a message it wishes to transmit to a communication controller justbefore
the task terminates. Thus, the final context switch is not part of the response time of a task
if it transmits a network message.

Since, taski is itself subject to jitter, the worst-caseglobal response time is computed as
the sum of the worst-case response time and the release jitter:

R↑i = r ↑i + R↑i−1+ Ji (4)

whereR↑i−1 is the worst-case global response time of the immediate predecessor task or
message to taski on this transaction.

3.2. CAN Messages—Worst-Case Analysis

It is assumed that communication between tasks scheduled on separate processors is imple-
mented using one or more Controller Area Networks. It has been shown (Tindell, Burns,
and Wellings, 1995; Baba and Powner, 1995; Tindell and Burns, 1994) that the scheduling
of periodic message sets on a CAN may be analysed to yield worst-case response times
for all messages using much the same algorithm as for computing worst-case task response
times. The analysis accounts for the time spent by a message waiting for access to the bus
and its transmission time. The queueing time for bus access is composed of a), possible
delay awaiting the transmission of the longest message already in progress (CAN messages
are non-preemptible) and b), delay waiting for messages of higher priority to be transmit-
ted. Using the standard CAN protocol (11-bit ID), the worst-case transmission time,t↑m, for

16 HENDERSON, ET AL.

messagem may be computed as follows:

t↑m =
(

8 Sm + 47+
⌊

34+ 8 Sm

5

⌋)
τbit (5)

whereSm is the data length (0. . .8 bytes) andτbit is the time required to transmit a bit.
CAN messages contain 47 bits of overhead. All data bits and 34 of the overhead bits are
subject to bit stuffing with a 5-bit width. Thus, the termb 34+8 Sm

5 c expresses the maximal

number of stuff bits inserted in a message. The worst-case queue delay time,w
↑
m, a message

m suffers waiting for higher priority messages to be transmitted may be expressed in the
following iterative form:

w↑∗m = Bm +
∑

j∈hp(m)

⌈
w
↑
m + Jj + τbit

Tj

⌉
t↑j (6)

whereBm is the blocking time or time spent waiting for a lower priority message to complete
its transmission andJj andTj are respectively the release jitter and period of messagej .
The second term in the equation is the worst-case delay suffered by messagem waiting for
all higher priority messages in the sethp(m) to be transmitted assuming a common release
instant. As with the evaluation of worst-case task execution times, the queueing time must
be computed by iteration where the termw↑∗m is a newly computed queueing time which
replacesw↑m on each iteration. An initial queueing time ofw↑m = Bm may be assumed and
convergence is achieved whenw↑∗m = w↑m. The blocking time is simply the time required
to complete the transmission of the longest lower priority message:

Bm = maxk∈lp(m)(t
↑
k)

wherelp(m) is the set of messages of lower priority than messagem. The local worst-case
response time of messagem is the sum of the queueing and transmission times:

r ↑m = w↑m + t↑m (7)

and the Global response time is expressed as the sum of the local response time, the response
time of a predecessor task and any Jitter:

R↑m = r ↑m + R↑m−1+ Jm (8)

whereR↑m−1 is the worst-case global response time of the immediate predecessor task to
messagem on this transaction.

4. Best-Case Analysis

4.1. Computing Best-Case Response Times—Tasks

Minimal response times for tasks are associated with minimal (best-case) computation
times,C↓. Consider the interactions between four independent tasks illustrated in Figure 4

IMPROVING THE ACCURACY OF SCHEDULING 17

Figure 4. Finding the best-case response time of taski .

in which low priority taski suffers interference from higher priority tasks{ j, k, l }, each of
which is subject to release jitter. In computing the best-case response time of taski , we shall
construct the situation which imposes the least interference from higher priority tasks; thus
avoiding the “critical instant” (Audsley et al., 1993) or point of common release. This instant
of minimal interference from higher priority tasks is termed theMaximum Slack Instant.

Maximum Slack Instant (MSI)

Themaximum slack instantfor taski , MSIi , is a point in time at whichall higher priority
tasks begin their longest interval between the completion of one execution and the arrival
of the next. The longest period of uninterrupted access is available to a taski following
MSIi . Clearly, to offer the longest uniterrrupted period for taski , each higher priority task
should have suffered no jitter on its last release and should be delayed for its next execution
by its maximum jitter.

An approach taken by Guti´errez (Gutiérrez et al., 1998) in calculating minimal response
times is simply to assume that all tasks of higher priority have just completed their execution;
thus, their next release isTj + Jj −Cj later. This method has the advantage of simplicity but
unfortunately results in an optimistic determination of interference since only one task can
finish exactly at the MSI; other tasks will complete their computation at earlier times, as
indicated for tasks{ j, k} in Figure 4. We are free to choose any task phasing which minimises
interruptions to lower priority tasks during their response times since the periodic behaviour
may start at any time; we shall assume that higher priority tasks finish latest before the MSI.
In the example depicted in Figure 4, taskl has the highest priority and finishes atMSIi and
tasksk and j finish at earlier times since they have lower priorities.

18 HENDERSON, ET AL.

LEMMA 1 (MINIMAL PREEMPTED EXECUTION TIME PRIOR TO A MAXIMUM SLACK

INSTANT) Let Pj represent the interval between the arrival of a task j and a MSI dur-
ing which task j is executed to completion. For a set of independent higher priority tasks
(the set hp(j)), Pj may be computed iteratively by:

P ∗j = C↓j +
∑

i∈hp(j)

⌈
Pj

Ti

⌉
C↓i

where P∗j replaces Pj on each iteration.

Proof: Calculating the preemption a task suffers before a maximum slack instant is similar
to the calculation of worst-case response times. We proceed using the approach suggested by
Joseph and Pandya (Joseph and Pandya, 1986) who applied an interval arithmetic technique
to compute worst-case task response times. Consider taskj in Figure 4 which suffers
interference from the two higher priority tasksk andl . The preemption time for taskj , Pj ,
is minimised by summing the minimum computation times of higher priority tasks:

Pj = C↓j +
∑

i∈hp(j)

C↓i (9)

However, multiple preemptions from higher priority tasks duringP are possible and this
naı̈ve approach is likely to be optimistic in practice. Consider taskj which suffers interfer-
ence prior to the MSI from both tasksk andl . Starting at the MSI and working in reverse,
the maximal number of preemptions from taskk is:⌈

Pj

Tk

⌉
and the interference time from these preemptions is:⌈

Pj

Tk

⌉
C↓k

More generally, the interference suffered prior to the MSI from all higher priority tasks is:∑
i∈hp(j)

⌈
Pj

Ti

⌉
C↓i

Pj is the sum of the computation time of the task and its total interference, thus:

Pj = C↓j +
∑

i∈hp(j)

⌈
Pj

Ti

⌉
C↓i

It is necessary to solve forPj iteratively in a way analogous to the worst-case analysis but
“in reverse”, i.e.,Pj may be derived by iterating the formula:

P ∗j = C↓j +
∑

i∈hp(j)

⌈
Pj

Ti

⌉
C↓i

IMPROVING THE ACCURACY OF SCHEDULING 19

An initial value of Pj = C↓j may be assumed. Note that this expression degenerates to the
approximate value of equation 9 if multiple preemptions by higher priority tasks are not
possible.

Context switch times are included in this analysis in much the same way that they are
for worst-case response times. Thus, theP interval including minimum context switch
times is:

P ∗j = C↓j +
∑

i∈hp(j)

⌈
Pj

Ti

⌉
(C↓i + Fi C↓cs) (10)

whereC↓cs is the lower bound on the context switch time andFi is defined by:

Fi =
{

2 whenhp(i) = {}
0 whenhp(i) 6= {} (11)

The final context switch for taskj is excluded from equation 10 since it completes
its computation as the next higher priority task is released. In the best-case, the initial
context switch is also excluded because taskj can be released at the instant a higher
priority task completes its computation. The minimal number of context switches, as a
result of preemptions of taskj , occurs when the release times of all tasks (other than the
highest priority task) coincide with completion times or occur during the computation of the
highest priority task. Thus, the only preemption context switches included in equation 10
correspond to the highest priority task.

Remark.We have chosen an ordering of tasks which causes their completion prior to the
MSI according to priority, with the highest priority tasks completing closest to the MSI.
Other orderings are possible and could lead to less preemption of lower priority tasks.
Thus, a particular ordering may be optimal for one value ofCi but not for another. Figure 5
illustrates the variation of the best-case response time with respect to computation time for
the lowest priority task in an arbitrary system of three tasks. The two possible orderings of
the two higher priority tasks prior to the MSI are considered. In the long term, cumulative
interference of the two task is independent of starting order but there are short-term variations
which mean that some orderings are optimal (produce the minimal best-case response times
for lower priority tasks).

In computingr ↓i for the example in Figure 4, there are only 6 possible orderings of the
higher priority tasks{ j, k, l } but for larger sets of tasks the number of possible orderings
could be numerous. For taski there are !#hp(i) orderings to consider. Potentially, a
search for the task ordering which offers minimal blocking is computationally expensive.
However, some task orderings are not permitted if tasks are precedence constrained. Clearly,
the task/message invocation order prior to MSI must respect any precedence constraints
between tasks and between tasks and messages.

THEOREM1 (LEAST LOWERBOUND ON TASK RESPONSETIMES) The least lower bound on
the response time of task i which suffers interference from a set of higher priority

20 HENDERSON, ET AL.

Figure 5. Response prior to MSI as a function of task ordering.

tasks hp(i) is:

C↓i +
∑

j∈hp(i)

⌈
r ↓i − Jj + Pj

Tj
− 1

⌉
C↓j

where r↓i is the minimal response time of task i , Tj , Jj and C↓j are respectively the period,
jitter and minimum computation times of the higher priority task j and Pi is the interval
between the last release time of task i and the maximum slack instant, from Lemma 1.

Proof: Consider the situation illustrated in Figure 4 where the low priority taski suffers
a single interference from the higher priority taskj . To suffer no preemptions, the local
response time of the lower priority task,ri , is bounded by:

r ↓i =
(
0, Tj + Jj − Pj

]
where(t1, t2] is an open left interval fromt1 to t2 excludingt1 and includingt2. For a single
preemption only:

r ↓i =
(
Tj + Jj − Pj ,2Tj + Jj − Pj

]
In the general case, the response time interval forn preemptions only is:

r ↓i =
(
n Tj + Jj − Pj , (n+ 1) Tj + Jj − Pj

]
This interference suffered by taski during its response is of course equal ton Cj and the

IMPROVING THE ACCURACY OF SCHEDULING 21

response timer ↓i = n Cj + Ci . The minimal response time is bounded thus:

n Tj + Jj − Pj < r ↓i ≤ (n+ 1) Tj + Jj − Pj

The inequality can be rearranged as follows

n− 1<
r ↓i − Jj + Pj

Tj
− 1≤ n

From the definition of the ceiling (x ≤ dxe < x + 1) function, it can be shown that as
dxe = n thenn− 1< dxe ≤ n. Thus, we can express the minimal number of preemptions
suffered by taski as:⌈

r ↓i − Jj + Pj

Tj
− 1

⌉

The total interference time associated with preemptions by all higher tasks inhp(i) is:

∑
j∈hp(i)

⌈
r ↓i − Jj + Pj

Tj
− 1

⌉
C↓j

The minimal response time can thus be expressed in iterative form as the sum of the
computation and interference times:

r ↓i = C↓i +
∑

j∈hp(i)

⌈
r ↓i − Jj + Pj

Tj
− 1

⌉
C↓j

The best-case response time is computed by iteration using the same technique as that
adopted in the analysis of the worst-case:

r ↓∗i = Ci +
∑

j∈hp(i)

⌈
r ↓i − Jj + Pj

Tj
− 1

⌉
C↓j

Wherer ↓∗i replacesr ↓i on each iteration assuming an initial value forr ↓i = C↓i . This
proceeds until convergence(r ↓∗i = r ↓i) or the schedule is infeasible ifr ↓i > Ti . Finally, the
time penalties of context switching are included as follows:

r ↓∗i = C↓i +
∑

j∈hp(i)

⌈
r ↓i − Jj + Pj

Tj
− 1

⌉
(C↓j + Fj C↓cs) (12)

whereC↓cs is the best-case context switch time andF is defined by equation 11. The initial
context switch to start taski is included in the computation ofP1 and the final context
switch may, in the best-case, coincide with the release of a higher priority task; thus, both
initial and final context switches are excluded from equation 12. As with the computation

22 HENDERSON, ET AL.

of minimal preempted execution times (equation 10), only context switches resulting from
the execution of the highest priority task are included in computing minimal response times.

Unlike worst-case response times, best-case response times reduce with increasing jitter.
Thus, the range of response times exhibited by a given task iswidenedby the presence of
jitter in higher priority tasks. In the best case, tasks will suffer no release jitter and their
global responses time may be expressed by:

R↓i = R↓i−1+ r ↓i (13)

whereR↓i−1 is the best-case response time of the predecessor task to taski .

4.2. Computing Best-Case Response Times—CAN Messages

In computing minimal message transfer times,t↓, we assume that no additional synchro-
nisation bits are inserted. Thus, the minimal transfer time of messagem assuming the
standard (11-bit ID) frame protocol is simply:

t↓m = (8 Sm + 47) τbit (14)

Since our communications scheduling regime is non-preemptive, a message may be trans-
mitted with zero queueing time regardless of the relative priority of the message. In addition,
it may be assumed that in the best-case, messages are not blocked because other transmis-
sions are underway. Thus, the minimum local response time,r ↓m, of a messagem is its
minimum transfer time alone:

r ↓m = t↓m (15)

This is true only if messagem is schedulable on the network, i.e., there are time intervals
between the transmission of higher priority messages. In the best case, messages will suffer
no release jitter and their global responses time may be expressed by:

R↓m = R↓m−1+ r ↓m (16)

whereR↓m−1 is the best-case response time of the predecessor task to messagem.

5. An Integrated Scheduling Algorithm

Computing worst-case execution times for end-to-end transactions essentially involves the
two stages:

1. Compute local response times on all resources

2. Compute global response times and jitter on all resources

which are repeated until convergence is achieved. The second stage requires the traversal
of precedence graphs to sum the delays along each end-to-end transaction. Because not

IMPROVING THE ACCURACY OF SCHEDULING 23

all information is available when computing response times on each resource, the process
has to proceed by iteration. On each iteration, the precedence constraints are applied in
sequence. For constraints involving kernel message passing, this entails making the starting
delay of the destination task equal to the response time of the source task (kernel delays in
message passing are included in task computation times). For constraints involving network
support, the starting delay of the message is made equal to the response time of the source
task and the starting delay of the destination task is made equal to the response time of
the message. The bounded response times of each of a set of end-to-end requirements is
computed using the following algorithm:

begin { Distributed Transaction Bounds}
Initialise global responses -R↓0 = R↑0 = 0;
Initialise Jitter,Jo = 0;
do

for eachp ∈ P do
for eachτ ∈ Tp do

compute blocking prior to MSI,Pτ ; (eqn 10)
compute local task responses,r ↑τ , r ↓τ ; (eqns 3,12)

for eachn ∈ N do
for eachm ∈Mn do

compute message transmission times,t↑m, t↓m ; (eqns 5,14)
compute message queueing times,w

↑
m; (eqns 6)

compute local message responses,r ↑m, r ↓m; (eqns 7,15)
for each full path,p = (v0, v1 . . . vn) do

for eachv ∈ p do
compute Global response boundary conditions,R↓v , R↑v ; (eqns 4,13,8,16)
compute jitter boundary condition,Jv; (eqn 1 or 2)

test for convergence;
until convergenceor not schedulable

end

The convergence test is satisfied when all response times are unchanged from one iteration
to the next. For many small-medium sized systems, between 2 and 4 iterations appear
sufficient to obtain a converged solution.

A software tool,X rma (Henderson, 1998), has been developed to undertake the dis-
tributed response time analysis. The tool accepts system descriptions, displays system data,
checks data integrity, analyses systems and computes bounds on end-to-end transactions.
Results of the analysis can be presented to show precedence graphs and end-to-end trans-
action as compositions of precedence constrained tasks and messages. System descriptions
are prepared in text files which include the following elements:

— Processor declaration;

— Task assignment on processors including task period and computation time bounds;

24 HENDERSON, ET AL.

— Network declaration and bit rate;

— Message assignment on networks including message period and length;

— Precedence constraints between tasks and messages;

— End-to-end transactions with deadline bounds.

The toolkit facilitates the rapid evaluation of different system configurations to check for
schedulability and that transaction responses are within their deadline bounds.

6. Conclusions and Further Work

In this paper we have addressed the problem of guaranteeing bounds on the duration of
end-to-end transactions in distributed real-time systems in which tasks communicate by
asynchronous message passing on one or more Controller Area Networks. Precise per-
formance data is required to assure the behaviour of distributed control systems where
periodic control actions are required with precise timing. In contrast to the computa-
tion of worst-case performance of scheduled real-time systems, the evaluation of best-
case response times has hitherto received little attention. We present a novel performance
analysis based on a more accurate computation of release jitter which yields both lower
and upper bounds on transactions using a single scheduling algorithm. The more accu-
rate treatment of jitter may also lower the predicted upper bound on transaction times
compared to previous, more pessimistic, analyses. Our expressions for response time in-
clude context switching overheads. Usually context switching is either ignored or the
delays are subsumed into task computation times. Our treatment of context switching is
approximate—it ignores the dependency of context switch delays on the level of the context
switch and other factors (Burns and Wellings, 1995). This approximate treatment might
usefully be refined to improve the overall accuracy of the analysis. However, any improve-
ment in this respect will rely on the availability of detailed timing information on kernel
behaviour.

Our programme of further work includes the generalisation of precedence constraints
to permit multiple immediate predecessors to tasks; this will allow the modelling of
a wider range of systems. Also of interest is the analysis of systems which use net-
work protocols other than CAN, the derivation of optimal task ordering prior to a MSI
to yield the longest period of non-preemption and empirical validation of analytical
results.

Acknowledgments

The authors gratefully acknowledge the help of the reviewers whose insightful comments
significantly contributed to the quality of this paper.

IMPROVING THE ACCURACY OF SCHEDULING 25

References

Audsley, N. C., and Burns, A. 1998. On fixed priority scheduling, offsets and co-prime task periods.Information
Processing Letters67(2): 65–69.

Audsley, N. C., Burns, A., Richardson, M., Tindell, K., and Wellings, A. J. 1993. Applying new scheduling theory
to static priority pre-emptive scheduling.Software Engineering Journal8(5): 284–292.

Baba, M. D., and Powner, E. T. 1995. Scheduling performance in distributed real-time control systems.2nd Int.
CAN In Automation Conference, pp. 7-2–7-11.

Bate, I., and Burns, A. 1997. Schedulability analysis of fixed priority real-time systems with offsets.Proceedings
of Ninth Euromicro Workshop on Real-Time Systems. Toledo, Spain, pp. 153–160.

Bate, I., and Burns, A. 1998. Investigation of the pessimism in distributed systems timing analysis.Proceedings
of Tenth Euromicro Workshop on Real-Time Systems. Berlin, pp. 107–114.

Burns, A. 1991. Scheduling hard real-time systems: A review.Software Engineering Journal6(3): 116–128.
Burns, A., and Wellings, A. J. 1995. Engineering a hard real-time system: From theory to practice.Software—

Practice and Experience25(7): 705–726.
Colnarič, M., Verber, D., Gumzej, R., and Halang, W. A. 1998. Implementation of hard real-time embedded

control systems.Real-Time Systems14: 293–310.
Fidge, C. J. 1998. Real-time schedulability tests for preemptive multitasking.Real-Time Systems14: 61–93.
Gutiérrez, J. P., García, J. G., and Harbour, M. G. 1998. Best-case analysis for improving the worst-case schedu-

lability test for distributed hard real-time systems.Proceedings of Tenth Euromicro Workshop on Real-Time
Systems. Berlin, pp. 35–44.

Henderson, W. D. 1998. The Xrma Toolkit. Technical Report NPC-TRS-98-1, University of Northumbria, School
of Computing and Mathematics.

ISO. 1993. 11898—Road Vehicles—Interchange of Digital Information—Controller Area Network (CAN) for
high-speed communication. ISO, 1st edition.

Joseph, M., and Pandya, P. 1986. Finding response times in a real-time system.The Computer Journal29(5):
390–395.

Klein, M. H., Lohoczky, J. P., and Rajkumar, R. 1994. Rate-monotonic analysis for real-time industrial computing.
Computer27(1): 24–33.

Klein, M. H., Ralya, T., Pollak, B., Obenza, R., and Harbour, M. G. 1993.A Practitioner’s Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. Boston: Kluwer.

Krtolica, R., Őzgűner, U., Chan, H., G˝oktaş, H., Winkelman, J., and Liubakka, M. 1994. Stability of linear
feedback systems with random communication delays.International Journal of Control59(4): 925–953.

Larsson, J. 1996. ScheduLite—a fixed priority scheduling analysis tool. Master’s thesis, Department of Computer
Systems—ASTEC, Uppsala University.

Őzgűner, U. 1989. Problems in implementing distributed control.Proceedings of the American Control Confer-
ence. Pittsburgh, pp. 274–279.

Ray, A. 1988. Distributed data communication networks for real-time process control.Chemical Engineering
Communications65: 139–154.

Sha, L., and Sathaye, S. 1993. A systematic approach to designing distributed real-time systems.Computer26(9):
68–78.

Tindell, K., and Burns, A. 1994. Guaranteeing message latencies on controller area network (CAN).Proceedings
1st International CAN Conference, pp. 2–11.

Tindell, K., Burns, A., and Wellings, A. J. 1995. Analysis of hard real-time communications.Real-Time Systems
9: 147–171.

Tindell, K., and Clark, J. 1994. Holistic schedulability analysis for distributed hard real-time systems.Micropro-
cessing and Microprogramming40(2–3): 117–134.

Tindell, K., and Hansson, H. 1995. Real-time systems and fixed priority scheduling. Technical Report Department
of Computer Systems, Uppsala University.

Warren, C. 1991. Rate monotonic scheduling.IEEE Micro11(3): 34–38.
Wind River Systems. 1993. ‘VxWorks Programmer’s Guide 5.1’. Wind River Systems Inc.

