
Integrating AORTA with Model-Based DataSpeci�cation LanguagesSteven Bradley�, William Hendersony, David Kendally, Adrian RobsonyOctober 20, 1997AbstractAORTA has been proposed as an implementable real-time algebra for con-current systems where event times, rather than values of data, are critical.In this paper we discuss an extension to AORTA to include a formal datamodel, allowing integration with a variety of model-based data speci�cationlanguages. An example is given using VDM with AORTA to de�ne a time-critical system with important data attributes, and supporting software toolsfor AORTA and a simple imperative language are described.1 IntroductionAlthough many timed formalisms exist, AORTA [6] (Application-Oriented Real-Time Algebra) is one of the few to consider how designs/speci�cations of concurrentsystems can be implemented in a way that time behaviour can be guaranteed. Sup-porting tools exist which allow AORTA designs to be simulated, formally veri�ed,and code to be generated [8]. One of the ideas behind the development of AORTAhas been that formal methods are good for more than just proof: an unambiguouslyde�ned semantics allows early exercising of designs by simulation, and provides abasis for reliable code generation. Whilst proof remains an important aspect ofany formal technique, we argue that it is not only the presentation of sound andcomplete proof theories or automatic veri�cation algorithms which should in
uencethe design of languages, but also the provision of facilities such as code generationand simulation.AORTA only models formally the order and timing of events, and does notdeal with data. Implementation details such as values to be passed during com-munication and the data transformations to be carried out during a given piece ofcomputation are given as annotations to the AORTA design, in the form of frag-ments of C [5]. In this paper we examine the problem of introducing formal modelsof data into AORTA designs, and how this a�ects the notation, the semantics, thetool support and the development method. The approach given here is di�erentfrom some other proposals [13, 20, 23, 25], in that rather than integrating witha particular formal speci�cation language, integration within a relatively generalframework (described in section 3) is suggested, which allows instantiations withmodel-based languages such as VDM [18] or Z [21], or with formally de�ned imper-ative languages. The formally speci�ed data properties are given as annotations tothe basic AORTA design (section 4), in much the same way that fragments of Ccode are, except that we give a formal semantics to the arrangement (section 5).An example using VDM and AORTA is given in section 6, and tool support fordesigns in a joint language is discussed in section 7, along with some methodologi-cal considerations. Finally, our conclusions are presented in section 8. First of all,though, we introduce the basic language of AORTA.1



2 Background to AORTAAORTA is a timed process algebra which can be used as a design language forcommunicating concurrent real-time systems. Its main novelty lies in its (semi-automatic) implementability, which is discussed in detail elsewhere [6]. A system isde�ned as a static parallel composition of processes, linked by explicit communica-tion channels. In its description of processes, AORTA inherits some notation fromCCS [19], but other ideas, such as communication channels, are borrowed fromelsewhere. Within a (sequential) process, actions can be o�ered, which must bematched by a communicating partner before the process can proceed, and a choicemay be o�ered between a number of actions. As in CCS, action pre�x and choice(sometimes called summation) are represented by . and + respectively, with 0 forthe null process which o�ers no actions. Recursion can be written using the sameequational format as used in CCS (e.g. A = a.A), but all recursion must be guarded(i.e. all process names must appear inside an action pre�x). The other constructsdo not have analogues in CCS, and are concerned with including time informationinto the process description.There are two constructs which are used to introduce time, and each of thesehas a deterministic and nondeterministic form. The �rst construct is a delay whichcauses the process to pause for the amount of time speci�ed, during which timeno actions are o�ered | time consuming operations such as computation are rep-resented in this way. As precise times are not always known, the delay may bespeci�ed with an upper and lower bound, rather than a precise �gure. A processwhich delays for precisely t time units before behaving like S is written [t]S, and ifthe delay is bounded by times t1 and t2 the process is written [t1,t2]S. The sec-ond construct is a time-out extension to summation, so that if none of the branchesof the choice are taken up within the given time, control is transferred to anotherbranch. Again, depending on how the time-out is implemented a precise �gurefor the time at which control is transferred may not be available, so an intervalof possibilities can be given instead. A process S which times out to process Tif no communication happens within time t is written S [t> T, and if the time isbounded by t1 and t2 it is written S [t1,t2> T. As data is not handled by thebasic language of AORTA, a data-dependent branch is modelled as a nondetermin-istic choice between processes. Such a choice is written P++Q, and is similar to thenondeterministic choice P uQ of CSP [17].In summary, a sequential process may be constructed from action pre�xes, sum-mations (choices over pre�xed processes), time delays, time-outs over choices, non-deterministic choices and guarded recursion. The syntax is summarised in Table 1.Each process has a behaviour in time which says which actions it is prepared toengage in, or in other words, at which of its gates it is prepared to engage in commu-nication. Obviously, for communication to take place there has to be more than oneprocess in the system | the composition of system from its component processesis kept separate from process de�nition in AORTA.Parallel composition of processes in AORTA is de�ned statically, by listing thenames of the processes, with | as a separator. Internal communication channelsare also de�ned statically by giving the connection set, which lists pairs of gates ofprocesses. Each gate may be connected only once, and a gate may not be connectedto another gate of the same process. The parallel composition and connectivitywithin a system is easily represented graphically. A small example demonstratesmost easily how process and system de�nition works in practice.2



pre�x a.Schoice S1 + S2delay [t]Sbounded delay [t1,t2]Stime-out (S1 + ... + Sn)[t>Sbounded time-out (S1 + ... + Sn)[t1,t2>Snondeterministic choice S1 ++ S2recursion equational de�nitionTable 1: Summary of AORTA sequential process syntax
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Figure 1: Connectivity of the Chemical Plant Controller2.1 A Chemical Plant Controller ExampleIn this section we introduce a semi-realistic example, based on a chemical plantcontroller. The controller has to monitor and log temperatures within a reactionvessel, and respond to dangerously high temperatures by sounding an alarm. Tworates of sampling must be provided, to be selected by the plant operator, each ofwhich has its own output format for a logging function. In order to ensure safetyof the plant, the temperature must be sampled at least every two seconds, and if areading lies outside the safety threshold the alarm must be sounded. This systemis described in more detail in [4], and is extended in section 6 to include data infor-mation. More complex examples have also been de�ned in AORTA, including a carcruise controller [6] and a parallel development of part of an industrial submersiblecontroller [5].The design presented here involves two processes, one of which handles the actualconversion of the data, while the other is used to log the data, and to control therate at which data is sampled. There are two internal connections, which are usedto pass the converted data value, and to indicate a change in the required samplingrate. The graphical representation of this system is shown in �gure 1.The �rst of the two processes, Convert, accepts raw data on the gate in, andcompares it with a threshold value. Depending on this comparison, the data con-version either takes place straight away, or is preceded by a warning signal. Duringthe actual conversion, which takes place in the Convert2 part of the process, thecalculation is done, and the result o�ered at the out gate, for connection to theDatalogger process. This output is timed out, to ensure that fresh data is alwaysavailable, and that dangerously high input values are noticed within a reasonable3



time. As well as accepting data input, the Convert process allows the conversionmode to be changed, which in this case involves a signal to Datalogger, and therecalculation of a lookup table. Again, if no communication is available with theDatalogger process within about 1.5 seconds, control is returned to the main sam-pling loop. Changing mode during conversion is excluded by the choice (+) betweenin and mode.Convert = in.(Convert2 ++ warning.Convert2)+mode.(changespeed.[0.3,0.4]Convert)[1.5,1.505>ConvertConvert2 = [0.001,0.004](out.Convert)[1.5,1.505>ConvertThe Datalogger process is fairly simple. Data is accepted on the getdata gate,which is then stored (requiring a computation delay). The normal sampling loop isdriven by a time-out, which regularly requests new data. The period of this loopdepends on the current mode of operation (it is either about 1.0 seconds or about0.25 seconds), and this mode of operation can be changed by a speed message fromthe Convert process. As well as accepting mode change commands, the Dataloggerprocess accepts requests for the downloading of the current data set to an externalmachine. In this case, the packet is constructed, and sent out via the senddata gate.This may take a considerable period of time, depending on the size of the packetand the nature of the communication link, and is represented by the communicationdelay associated with senddata in the connection set.Datalogger = getdata.[0.001,0.015](speed.Datalogger2+download.[0.5,1.0]senddata.Datalogger)[1.00,1.005>DataloggerDatalogger2 = getdata.[0.001,0.015](speed.Datalogger)+download.[0.5,1.0]senddata.Datalogger2)[0.25,0.255>Datalogger2Having de�ned the individual processes, the full system is de�ned by the pro-cesses which run in parallel, along with connections, both internal and external. Aswell as providing a textual format for the data presented in Fig 1, communicationdelays are also associated with each communication channel.(Convert | Datalogger)<(Convert.changespeed,Datalogger.speed:0.001,0.003),(Convert.out,Datalogger.getdata:0.001,0.003),(Convert.in,EXTERNAL:0.001,0.003),(Convert.warning,EXTERNAL:0.001,0.003),(Convert.mode,EXTERNAL:0.001,0.003),(Datalogger.download,EXTERNAL:0.001,0.003),(Datalogger.senddata,EXTERNAL:0.5,10.0)>3 Data Model AssumptionsHaving described the basic language of AORTA, we can now describe the extensionsto handle data. There are two main types of functional speci�cation languages:model-based (such as Z [21], VDM-SL [18] and B [1]) and algebraic (such as ACT4



ONE [20] and OBJ [15]). In a model-based language, an abstract formal modelof the data in the system is built, and operations are speci�ed and described astransformations on that model. An algebraic approach does not require a completemodel to be built, and operations are speci�ed only in terms of each other. Thesetwo approaches are not entirely incompatible, as model-based speci�cations can bewritten in an algebraic style, and models can be built into an algebraic speci�cation,but for the purposes of this paper the distinction is important. We have chosen touse model-based languages for the pragmatic reason that algebraic languages tendto be biased towards implementation using functional languages, and it is muchmore di�cult to predict the real-time performance of a functional program thanan imperative one. There are no pressing reasons for choosing one model-basedlanguage over another in our model, and in particular this work is equally applicableto Z, VDM, B, and formally de�ned imperative languages. Rather than choosingone of these languages arbitrarily, a general presentation is given here. Bowen andHinchey, in their `Ten Commandments of Formal Methods' [3] make the point thatin industrial application of formal methods it is important to �t in with existingworking practices. This point can be extended to the integration of formalmethods,where integration with a variety of formal methods has the advantage that as littleas possible extra e�ort has to be made in learning new notations. Therefore wefeel that the loose coupling of AORTA with model-based speci�cation languages,rather than a particular language, is a strong point. The speci�cs of how VDM canbe used with AORTA are given with an example in section 6, and tool support forAORTA with a simple imperative language is described in section 7.We now describe a fairly general framework for the description of model-basedlanguages, and explain our assumptions. The basic model is that each process hasa set of possible states, States, over which the variable � may range. The state� includes evaluations for a set of state variables. Each variable A has a set ofvalues over which it may range, given by values(A). Variables can be read using aprojection �:A, and may be updated using the standard notation �[A = v ] whereA is a variable name and v 2 values(A). Operations are represented using a three-place relation on states, so an operation � which can act on state � to give state�0 is written � �=) �0The operation which changes nothing is then the identity relation on states � ,where � �=) �As well as accessing individual variables and performing operations on states, de-cisions have to be made based on the data state, which requires the de�nition ofpredicates on states, written p(�). Finally, we will need two distinguished statevariables: A, with values(A) = None = f?g, and T , with values(T ) as the timedomain in use (positive reals or natural numbers).4 Extension of SyntaxAccording to [6], the abstract syntax for AORTA sequential expressions isS : : =Xi2I ai :Si j [t ]S j Xi2I ai :Si�tS j [t1; t2]S j Xi2I ai :Si�t2t1S j Mi2I Si j Xwhere t , t1 and t2 (t1 < t2) are time values taken from the time domain (eitherthe positive reals or the naturals), ai are gate names, and X is taken from a set ofprocess names used for recursion. A system expression, is written as a product of5



processes with a connection set KP =Yi2I Si < K >On the whole, the translation from concrete syntax to abstract syntax is straight-forward, but some restrictions are imposed. Choice, with or without time-out,can only take place between communication events, otherwise parallel execution ofcomputation within a single process is required, or a counterintuitive form of timenondeterminism must be adopted. P is used to represent choice, and � for time-outs. The syntax is extended for each of these constructs apart from recursion, sorather than give the whole new syntax at once, the extensions are dealt with inturn.4.1 CommunicationIn the original abstract syntax, communication (and its extensions to choice andtime-out) uses only gate names, re
ecting the pure synchronisation model of thesemantics [6]. Extending communication to include value-passing can be achievedby associating a di�erent gate name with each data value to be o�ered or received(see [19]). While attractive from a theoretical point of view, as this requires only alittle syntactic sugaring, it does raise some practical di�culties in implementation.Also, the abstract speci�cation of data state transformation via computation isdi�cult to incorporate into this model.The approach adopted here is more akin to that adopted by LOTOS, with itsinclusion of the ACT ONE data language for value-passing [20]. Variable namescan be attached to communications as input or output parameters, using a questionmark for input and an exclamation mark for output. If a value is to be read fromgate a into variable A, this is written a?A:S , and if the value held in the variableB is to be output on gate a, this is written a!B :S . In the general case a gate mayhave input and output, written a?A!B :S , so the abstract syntax form for choice isXi2I ai?Ai!Bi :SiIf no data is associated with a communication then the input and output variablesare both given as the distinguished variable A (which always has value ?), sothat a:S is an abbreviation for a?A!A:S . Similarly, a?B :S is an abbreviation fora?B !A:S and a!B :S is an abbreviation for a?A!B :S . The variable T is used torepresent a perfect clock, and so cannot be used as a communication variable.Communications within a time-out are adapted in exactly the same way as forchoice, giving the abstract syntax formsXi2I ai?Ai !Bi :Si�t2t1Sand a corresponding deterministic form.4.2 ComputationWithin AORTA, computations are represented only by a time delay, but duringsuch delays a change of data state will usually take place. Operations which changestate are represented by transformation functions �, which are attached to the timedelay construct using braces. If an operation � takes between t1 and t2 time unitsto complete, this is represented by the abstract syntax form[t1; t2f�g]S6



Some computations will require access to a real time clock, for time-stampingor time-averaging, so a special state variable T is used to represent a perfect clock.In practice, a physical clock will not be perfect, as it may run at the wrong speed,and may have its values discretised. This is modelled by de�ning a physical clockfunction on the perfect clock, which gives a set of values related to the perfect clockwithin some level of accuracy. During computations, time can only be accessed viathe physical clock function.4.3 Data dependent choiceData dependent choice is represented as nondeterministic choice in AORTA, usingthe Li2I Si notation. In order to give the conditions under which each branch ofthe choice is to be taken, a predicate on the state is attached to each, again usingbraces Mi2I SifpigSometimes a degree of nondeterminism is helpful, so the predicates are allowed tooverlap (i.e. there can be j and k such that p-1j (true) \ p-1k (true) is nonempty).There must, however, always be one predicate which is true (i.e. 8�:Wi2I pi (�)),to ensure that some branch will be taken up.Combining the extensions for communication, computation and data dependentchoice gives the full abstract syntax for AORTA terms with data informationS : : = Xi2I ai?Ai!Bi :Si j [tf�g]S j Xi2I ai?Ai!Bi :Si�tSj [t1; t2f�g]S j Xi2I ai?Ai !Bi :Si�t2t1S j Mi2I Sifpig j Xwhere t , t1 and t2 (t1 < t2) are time values taken from the time domain (eitherthe positive reals or the naturals), Ai and Bi are state variable names, � is a statetransformation function, the pi are predicates on the state, and X is taken from aset of process names used for recursion.5 Enriched Semantics for AORTAThe semantics de�ned in [6] gives a strati�ed set of operational transition rulesfor de�ning a transition relation between AORTA terms. A similar approach isadopted here, except that the transition system is enriched with the data state.An interleaving semantic model is used, with time transitions represented by (t)�!and action transitions (i.e. communications) represented by a�!. A transitionsystem strati�cation is a technique whereby transition rules with negative premisescan be meaningfully included. By evaluating the transition system in layers, orstrata, it can be shown that no transition's validity depends on its own negation,as circularities can be removed [16]. In our system, the lowest stratum containstransitions between sequential expressions, the second contains all internal systemcommunications, and the third (and highest) contains system time transitions andexternal communications. By organising the transition system in this way, thenegative premise for the system time delay rule given below can be consistentlyincorporated. This negative premise is essential to enforce maximal progress, or� -urgency.To de�ne the �rst stratum, we have to consider an important subset of sequentialexpressions, known as the regular expressions, on which the semantics is de�ned(n.b. the semantics is unde�ned on non-regular expressions). Regular expressions7



Pi2I ai :Si�tS [[�]] (t)�!S [[�+t ]]Pi2I ai :Si�tS [[�]]aj?v !�:Bj�! [tf�g]S 0j [[�[Aj = v ]]] j 2 IS 0j 2 Poss(Sj ;�[Aj = v ])t 2 delays(aj )v 2 values(Aj )Figure 2: Transition rules for sequential expressions with datahave no nondeterminism or recursion before the next action, and can easily besyntactically characterised. A regular sequential expression is annotated with adata state �, written S [[�]], and a set of eight sequential expression transition rules(which are de�ned only on regular expressions) can be given. The full set of rulescan be found elsewhere [7], but two example rules are given in �gure 2, where weabbreviate the updating of the perfect clock using the the de�nition �+t 4 �[T =�:T + t ] which changes the state only by adding t to the perfect clock variable.The semantics of data dependent choice is not given by transition rules, but by thede�nition of the Poss function. Any AORTA term which starts withLi2I Si is notregular, so has to be regularised when an action transition takes place. Withoutany data state information, the choice between branches is nondeterministic, butby attaching predicates to the branches, a data dependent choice can be made.The Poss function de�nes possible resolutions of nondeterminism which are usedto regularise a process; again details can be found elsewhere [7]. There are threerules for system expressions, based on the transitions of sequential expressions, forinternal communication, external communication, and time progress. The rule fortime progress is8i 2 I :Si [[�i]] (t)�!S 0i [[�0i]]Qi2I Si [[�i]] < K > (t)�!Qi2I S 0i [[�0i]] < K > 8t 0 < t :Qi2I Age(Si [[�i]]; t 0) < K > �6�!The negative premise �6�! is used here to enforce the maximum progress principle,and a simple priority on communication | internal communication is preferredto external communication. A more sophisticated prioritisation can be achieved bymaking each communication dependent on all higher priority communications beingimpossible. To retain the consistency of the transition system, a more complexstrati�cation must be used, with a di�erent stratum for each priority level. Thelowest priority level will always be for the time delay, so as to enforce the maximumprogress principle. Within the rule for time progress, the function Age is used torepresent the a process after a given amount of time has passed. More formally, wede�ne Age(E ; t) = E 0 , E (t)�!E 0In [6] a direct syntactic interpretation of Age is given, along with a theorem relatingit to the de�nition just given, which indirectly demonstrates that Age is well-de�ned(i.e. it is a function).6 An Example Using VDMThe chemical plant controller example of [4] is given here as an example of howdata speci�cations can be built into AORTA. VDM is used as the speci�cation8



language here, although other languages can equally well be used. Addressing thedata model assumptions given in section 3 in turn, we �rst have to consider howthe set of possible states of a process can be de�ned. In VDM this can be doneby de�ning a composite type, including �elds for each of the state variables of theprocess (including A and T ). Invariants on the datatype can be used to restrict thestate space. The set of values for each state variable is de�ned by its type. Selectorsare used to provide projections for individual variables, and the � function gives aneasy mechanism for updating:�[A = v ] = �(�;A 7! v)Operations are simply VDM operations which take no argument and return noresult, but have the process state as a writable external, and no (i.e true) precon-dition. The identity function on states � is simply the operationIDext wr s : Statespost s = (�sFinally, predicates on states are de�ned simply as boolean valued functions onstates (i.e. of type States ! B).To construct the set of (data) states for the Convert process, we use �ve statevariables, including the perfect clock T and the dummy A . There are two gatesof the Convert process which carry data, namely in and out: the state variablesassociated with these gates are input:Rawdata and output:Temp respectively. Alookup table is used for the conversion, and this is stored in the state variable ta-ble:Lookuptable. With the time domain represented as the type Time, the compositetype representing the state of Convert is given byConvert :: input : Rawdataoutput : Temptable : LookuptableT : TimeA : NoneWithin Convert, there are two computations: the �rst converts raw data to atemperature, using a lookup table, and the second recalculates the lookup table fora di�erent conversion mode. Assuming that we have the function evaluate then theconversion operation is de�ned asDOCONVERSIONext wr conv : Convertpost conv = �((��conv ; output 7! evaluate((���input ;(��table))Changing conversion mode depends on a function newtable which recalculatesthe lookup table, so the operation for changing mode is de�ned asCHANGEMODEext wr conv : Convertpost conv = �((��conv ; table 7! newtable((��table))To specify the behaviour of nondeterministic choice, a predicate on the statemust be attached to each branch of the choice. In the Convert process, the be-haviour depends on whether the raw data value exceeds a threshold value; if so awarning signal must be sent. The predicates which we are interested in are9



convertdatahigh :Convert ! Bconvertdatahigh(conv) 4 input(conv) > thresholdand a corresponding predicate convertdataok. which assume that we have de-�ned a total order > on Rawdata and that the value threshold:Rawdata is de�ned.Attaching these new data constructs to the Convert process gives the de�nitionConvert = in?input.(Convert2 {convertdataok} ++warning.Convert2 {convertdatahigh})+mode.(changespeed.[0.3,0.4 {CHANGEMODE}]Convert)[1.5,1.505>ConvertConvert2 = [0.001,0.004 {DOCONVERSION}](out!output.Convert)[1.5,1.505>ConvertThe Datalogger process has its own set of states, de�ned by the compositetypeDatalogger :: input : Temppacket : Loggerpackethistory : (Temp � Time)�T : TimeT : TimeA : NoneTwo of the variables, input and packet are used to carry data for communicationon gates getdata and senddata, while history is used to record data with timestamps. The variable T is used for the physical clock, as well as the usual T and Avariables. Two computations are associated with Datalogger, which correspond toadding a data item (with time stamp) to the store, and making up a data packet fordownloading. To get the time stamp value from the clock, we require the functionpossclocks which returns the possible physical clock values at a given time. Thedata which is input from the getdata port is added to history with the operationADDDATAext wr mk-Datalogger(h; i ; p; t1; t2; a) : Dataloggerpost t1 2 possclocks(t2) ^ h = cons((t1; i);(�h ) ^ t2 = (�t2Finally, assuming the function makepacket we can de�ne the operationMAKEPACKEText wr mk-Datalogger(i ; p; h; t1; t2; a) : Dataloggerpost p = makepacket((�h ) ^ h = [ ] ^ t2 =(�t2There are no nondeterministic choices in the Datalogger process, so the fullversion of the process, including data information, isDatalogger = getdata?input.[0.01,0.015 {ADDDATA}](speed.Datalogger2+download.[0.5,1.0 {MAKEPACKET}]senddata!packet.Datalogger)[1.00,1.005>DataloggerDatalogger2 = getdata?input.[0.01,0.015 {ADDDATA}](speed.Datalogger 10



+download.[0.5,1.0 {MAKEPACKET}]senddata!packet.Datalogger2)[0.25,0.255>Datalogger2Having de�ned the individual processes, the system composition is given asbefore, using the | operator and a connection set, but with the addition of initialdata states for each of the processes within the parallel composition.7 Tool Support and Methodological ConsiderationsThe emphasis of AORTA is on practicality, in that implementation and simulationissues have been considered alongside veri�cation; designs written in the languagecan be represented purely in ASCII; implementations are based on generated C.One crucial aspect of a practical design method is the availability of supportingsoftware tools, and research tools for graphical simulation,model-checking via graphgeneration, and code generation have been provided. These were all originallywritten for the basic language without a formal data model, where all computationalaspects were represented by implementation fragments written in C.In order to provide support for AORTA extended with a formal data model,some generalisation of the tool set was required. One possible approach wouldhave been to choose a formal language for data, such as VDM, and to attempt aone-o� integration of the AORTA tool set with some supporting tools for the datalanguage. This would have the advantage that it might not require too much work,and could provide a fairly tight coupling, but would have the obvious disadvantagesof inapplicability to other languages and tools. Instead a more general approachwas adopted, whereby an abstract data language interface was speci�ed, (based onthe data model assumptions given in section 3) and the integration done at thatlevel. In this way, integration with a new language or tool set involves providingan interpretation of the abstract notions of value, variable, state, computation,predicate and so on. The obvious advantage of this approach is in its 
exibility,with the disadvantages that the tools which are to be integrated may need to beadapted to �t the interface provided.The actual support which is provided for the data enriched language mostlyfalls into the area of simulation, which we introduced in section 1 as an importantpart of a formal method. For the basic language the tool set o�ers simulation asa technique for exercising the semantics, by choosing time and action transitionsfrom a menu. Although this is helpful for a detailed exploration of the behaviour ofa design, the more complete description given by a design with data allows a moredynamic simulation to be o�ered as well; one in which the processes of the designare simulated by concurrently executing threads, which communicate and evolvespontaneously in time. Put another way, we can now provide a direct interpreterfor the combined language. The new support provides such a simulator, whichallows any AORTA design annotated with formally speci�ed data operations to beexecuted. Implementation code is provided as a separate annotation to the design,so that if the data formalism is supported by code generation, then the whole ofthe design (including data parts) can be used to generate complete implementationcode directly.Our initial experiment into providing a formal data language has used a simpleformally de�ned imperative language with sequence, choice and iteration, and inte-ger, boolean and enumerated data types. This language is substantially smaller thanVDM, for example, but serves to demonstrate that a useful integration is possible.Furthermore, as the computation data relation is a function, direct interpretationis possible, and the language is explicit enough to allow direct code generation. In11



fact, this is just the sort of language that formal re�nements from Z, B or VDM aimto produce, so it may be that two levels of data formalism should be provided: onefor an abstract, possibly implicit, speci�cation, and one for an explicit description,closely related to an implementation, and derived by a veri�ed re�nement fromthe speci�cation. However, some approaches, such as that adopted by the IFADVDM-Toolbox [11] are based on writing explicit speci�cations in the �rst place,and hence providing code generation and interpretation facilities directly. In suchcases as these, direct integration with AORTA is possible, without the need for anintermediate language.The discussion about whether implicit speci�cation and re�nement, or explicitspeci�cation and code generation is better is outside the scope of this paper, but wenote that in order to satisfy our earlier criterion of integration with as wide a rangeof approaches as possible, we should be able to deal with both. This is possiblebecause of a further level of generality built in to the tool support for AORTA,beyond that of a general data language. Not only is the actual type of data lan-guage with which designs can be annotated quite general, but the number and typeof annotations themselves is general. For instance, for AORTA with the simpleimperative language, annotations can be provided at each point in the syntax treefor the textual form of the data part, for its internal representation as a relation onstates, or whatever, for the implementation code associated with it, and for infor-mation concerning the graphical presentation of the syntax. However, the notion ofannotation is general, and the implementation of the tool set modularised such thatthe addition of new annotations, perhaps for a more abstract data speci�cation, orperhaps for proofs of correctness, or perhaps for timing information about the code,is quite straightforward. Having provided di�erent kinds of annotation, the toolthen needs to be con�gured to say which will be used in code generation, which areto be used in simulation, and which in veri�cation etc.How then are such tools and languages to be used to develop systems? Wesuggest that early simulation is important, as it allows problems in the design tobe detected before too much of the implementation detail is �xed. Similar argu-ments are given for the early application of speci�cation and proof techniques duringsystem development. The aim of this work is not necessarily to replace proof in sys-tem development, but rather to avoid wasted e�ort during proof by detecting andeliminating as many errors as possible by simulation, which can be thought of ashigh-level testing. With the addition of an interpretation for data two kinds of sim-ulation are now possible. In the �rst, in which the processes evolve spontaneously, adesign error may be detected and corrected immediately, or further, more detailedsimulation, based on the semantics, may be required to locate the problem. Havingsatisfactorily tested the design, it may at this point be appropriate to attempt aformal correctness proof. Note that further work is required on proof techniques ina combined language (see section 8). Having veri�ed the correctness of the design,further work will be required to produce the implementation. If code generationof data properties is not automatic then re�nement to code, with proofs, will berequired. Also, static analysis of code (possibly with user intervention) to extracttiming information will we required, as inputs to the scheduling calculations, whichare used to verify that the implementation timing will match that given in thedesign [4].8 ConclusionsAORTA is a timed process algebra-based design language, so comparison might bemade with other timed process algebras; however so many timed process algebrashave been de�ned that even a cursory list of references would be too long for the12



scope of this paper, so the reader is referred elsewhere [9], and direct referencesgiven only for (a version of) Timed CCS [26], Timed CSP [22], and (a version of)Timed LOTOS [2]. At this level the main distinctive feature of AORTA is theability to generate implementations about which timing guarantees can be made.This paper has shown how it is possible to build a formal data model intoAORTA and how tool support for simulation and implementation generation tech-niques and tools can be extended. Further work needs to be done on the use ofmodel-checking techniques in association with data properties. One possible ap-proach is to provide a (veri�ed) re�nement of the data associated with the statespaces, so that required data properties still hold, but that the state space is �-nite. Once the state space has been reduced to a �nite size, data properties canbe represented as propositions labelling timed graphs, so that model-checking ofproperties like `The alarm will come on within 5 seconds of receiving a temperaturereading above the safe limit' becomes possible. The abstraction to the trivial statespace where all data information is ignored has been shown to be equivalent to theoriginal semantics [9], so we can at least still perform simple model-checking withassurance of correctness.Other research has covered some of the aspects of this work. MOSCA provides aformalism combining CCS, VDM and time, but without providing implementationtechniques [25] whilst RAISE [24] and LOTOS [20, 27] provide data modelling inconcurrent systems, with some implementation techniques, but no time. Workhas also been done with timed extensions to LOTOS [2], which already has thedata language ACT-ONE included, but in this case no implementation techniquesare provided. A di�erent kind of approach involves introducing time into dataspeci�cation languages such as Z [10, 13, 14], with the closest work to ours beingthat by Fidge et al [12], which allows the timed re�nement of concurrent systems,including reasoning about implementations by embedding scheduling theory intothe Z model. This approach can only be described as `di�erent' to ours, with therelative merits and demerits associated with the two being the usual ones associatedwith re�nement as opposed to code generation techniques. Also, most of their workhas been associated with providing the proof theory (as would be expected for are�nement calculus), whereas our work has focussed on implementation aspects.In summary, then, this paper has shown how a fairly general formal data modelcan be integrated syntactically and semantically into AORTA. Tool support forsimulation and code generation has been discussed, and an example of using AORTAwith VDM has been included. Proof support needs further work, although somesuggestions have been made, so some may raise the question as to what purpose aformal semantics serves where no proof support is to be o�ered. In our introduction,we argued that formal methods and good for more than just proof, and we feel thatthis has been borne out by the provision of useful simulation tools, and also a clearstatement of the necessary assumptions about the data model, which have formedthe basis of tool support for the data-enriched language.References[1] J-R Abrial. The B-Book. Cambridge University Press, 1996.[2] T Bolognesi and F Lucidi. LOTOS-like process algebras with urgent or timedinteractions. In K R Parker and G A Rose, editors, Formal Description Tech-niques IV, FORTE '91, Sydney, pages 249{264. Elsevier, November 1991.[3] J P Bowen and M G Hinchey. Ten commandments of formal methods. IEEESoftware, 28(4):56{63, April 1995. 13
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