A Formal Design and Implementation Method For Real-Time
Embedded Systems

Steven Bradley

William Henderson

David Kendall

Adrian Robson
Department of Computing, University of Northumbria at Newcastle, UK

Stephen Hawkes
International Research & Development Ltd., Newcastle-upon-Tyne, UK

Abstract

This paper tackles the problem of using formal meth-
ods for practical real-time system development and ver-
tfication, and is based on a real example. Many formal
methods for real-time systems have been proposed, but
this technique (AORTA) is one of the few to address
the issue of how formal designs are to be implemented.
Earlier papers on AORTA have been based on providing
the formal semantics of the language, and on particular
aspects of implementation or verification. This paper
concentrates on setting AORTA within the development
life cycle, and demonstrating that the approach can be
adopted for non-trivial ezamples.

1. Introduction

Many computer systems are required not only to de-
liver correct results, but to deliver those results at the
correct time — such systems are called real-time sys-
tems. These systems are most often to be found in con-
trol equipment, such as automatic washing machines,
fly-by-wire systems, life-support machines, car braking
systems, or industrial plant controllers. Many safety
critical applications, where correct functioning is of vi-
tal importance because of the hazardous results of mal-
function, fall into the category of real-time systems;
many of the applications already mentioned would be
classified as safety critical. In addition to the risks of
physical harm which might be caused by faulty soft-
ware, there is the increasing risk of financial loss as-
sociated with providing functionality with software. A
product recall following the detection of an error in
embedded software could be very costly. Software is
perhaps the most easily modified of all technical prod-

ucts. However, the correction of faulty software in em-
bedded systems can become just as much a financial
burden to the manufacturer as the replacement of a
faulty mechanical handbrake in an automobile.

Implementors of real-time systems will be aware of
the difficulty of predicting performance at an early
stage in the development cycle. Usually, it is only pos-
sible to measure performance at a late stage in the
implementation of the software and hardware. Even
when a system 1s available for evaluation, verifying
that it meets timing requirements will simply involve
conducting (possibly many) tests with the system un-
der different loading conditions. It is common experi-
ence that concurrent real-time software exhibits com-
plex behaviour with extremely large numbers of states.
With anything other than a trivial application, testing
1s likely to consider only a small fraction of possible be-
haviours of the system. Clearly, providing confidence
that a system will meet deadlines under every circum-
stance by testing alone will not in general be possible.
Cullyer and Storey [7] outline the problems of veri-
fying the real-time behaviour of software and describe
testing techniques and strategies for safety-critical soft-
ware; they conclude that current tool support for test-
ing such software is weak.

A further problem of the testing approach is that
measurements made on the system may well point to
inadequacies in the implementation or perhaps in the
design. Reasoning about where the problem lies can be
very difficult since design decisions are often informally
linked to the implementation. This encourages devel-
opers to avoid performance issues until the implemen-
tation stage. The ability to reason about performance
at an early stage, during design, seems to be an impor-
tant goal. Clark et al [6] underline the inadequacy of
testing as a means of verifying real-time systems and
emphasise the need to provide high confidence early in

the development process that timing requirements will
be met by the final system.

The quality of software for high profile safety-critical
applications such as aviation or automobile traction
control i1s clearly a concern. However, there is an in-
creasing use of embedded controllers in a wide range of
products such as kitchen appliances, heating, fire detec-
tion and security systems. These systems can also pose
a threat if poorly programmed; for example, a faulty
controller for a washing machine could conceivably cre-
ate a hazardous condition by allowing the water heater
to remain on when the machine is dry.

Recent European law [8] places the responsibility
for producing safe embedded systems on the software
developer; it will become essential that developers use
reliable methods and tools to demonstrate that they
have discharged their responsibility. What methods
are deemed reliable is changing as the subject devel-
ops through research and standards respond; devel-
opers might reasonably be expected to be aware of
best-practice and use working methods which reflect
this. Currently, highly rigorous, mathematically-based
methods are mandatory only for defence contract work.
Although the use of formal techniques during soft-
ware development can provide greater confidence in the
quality of designs, they do not necessarily lead to a
straightforward implementaion as executable code.

An alternative approach to system verification, per-
haps best characterised by the phrase “correct by de-
sign”, challenges the traditional approach of testing.
However, formal mathematical techniques, which aim
to produce correct systems, are often far removed from
practical implementations. In particular, very little
work exists on relating real-time performance of sys-
tems with the mathematical models used to reason
about real-time behaviour. The remainder of the pa-
per discusses a technique which has a formal basis, but
which admits verifiable implementation; a real example
1s used to demonstrate the method in practice.

2. The Language of AORTA

AORTA Application Oriented Real-Time Algebra at-
tempts to address some of the problems faced by de-
signers of real-time systems by providing a formal lan-
guage for system design and verification, which deals
with quantitative time, and relates directly to imple-
mented systems. In order to ensure implementability
of designs, the language is more restrictive than many
other timed formalisms, which can be used to model a
wide range of possible behaviours, many of them unim-
plementable. The basic language is a timed process al-
gebra, related to the timed variants of process algebras

like CCS [14], LOTOS [11] and CSP [10]. Features of
AORTA which are not found in other timed process
algebras include

e static definition of concurrency parallelism, in or-
der to simplify timing analysis of processor multi-
tasking,

e static definition of communication paths, in order
to simplify timing analysis of inter-process com-
munication,

e time bounds for delays and time-outs, to cope with
the implementation-related problems of jitter and
clock discretisation.

These features do, in some cases, restrict the expressiv-
ity of the language for modelling and specification pur-
poses, but the language is not meant to address these
problems: it i1s intended purely as a design language.
We believe that these restrictions do not seriously ham-
per the ability of the language to design real real-time
systems, and the notation has been exercised on sev-
eral medium-sized examples, such as the submersible
controller considered in this paper. Rather than try to
define a wide-spectrum language, which can be used to
define systems at different levels of abstraction, each
related by a refinement proof technique, we have cho-
sen to use a timed temporal logic for the specification,
with model-checking as the proof method. This al-
lows us to focus the language more closely on design,
and to avoid proof techniques such as timed bisimula-
tion and timed refinement, which do not extend well
from the untimed setting to the timed setting. More
detailed justification of the choices made in choosing
the language constructs and proof techniques can be
found in [3]. The aim of this paper is to describe how
AORTA can be applied, but first the language needs
to be introduced.

Of the common untimed algebras, AORTA is most
similar to CCS, both in notation (. for action prefixing
and + for choice) and in semantics (only two-way syn-
chronisation allowed), but even apart from the time
considerations there are some important differences.
One of the restrictions placed on the language to aid
implementation is that the number of processes in a
system may not vary, and this restriction is enforced by
insisting that all parallel composition should happen at
the top level. This gives rise to two levels of descrip-
tion: one for the sequential processes within a system,
and another for the parallelism and connectivity of the
system. Some familiarity with CCS is assumed in the
following.

2.1 Sequential Processes

The description of sequential processes is where the re-
lation of AORTA to CCS is shown most strongly. Ac-
tions can be offered, which must be matched by a com-
municating partner before the process can proceed, and
a choice may be offered between a number of actions.
As in CCS, action prefix and choice (sometimes called
summation) are represented by . and + respectively,
with O for the null process which offers no actions. Re-
cursion can be written using the same equational for-
mat as used in CCS (e.g. A = a.4), but all recursion
must be guarded (i.e. all process names must appear
inside an action prefix). The other constructs do not
have analogues in CCS, and are concerned with includ-
ing time information into the process description.

There are two constructs which are used to intro-
duce time, and each of these has a deterministic and
nondeterministic form. The first construct is a delay,
which causes the process to pause for the amount of
time specified, during which time no actions are of-
fered — time consuming operations like computation
are represented in this way. As exact timings are not al-
ways known for such delays, the delay may be specified
with an upper and lower bound, rather than a precise
figure. A process which delays for precisely ¢ time units
before behaving like S is written [t]S, and if the delay
is bounded by times t1 and #2 the process is written
[t1,t2]S. The second construct is a time-out exten-
sion to summation, so that if none of the branches of
the choice are taken up within the given time, control
is transferred to another branch. Again, depending on
how the time-out is implemented, a precise figure for
the time at which control is transferred may not be
available, so an interval of possibilities can be given in-
stead. A choice process S which times out to process T'
if no communication happens within time ¢ is written
S [t> T, and if the time is bounded by ¢1 and 2 it 1s
written S [t1,t2> T.

Having given the time behaviour of our new con-
structs it is necessary to go back to describe the time
behaviour of prefix and choice. A simple prefix forces
the process to wait until communication can take place
on the named channel, so the process a.S can wait for
any length of time without changing, provided commu-
nication is not possible. Consideration of how a choice
should behave in time leads us to restrict choice to
processes which start with an action prefix or another
choice. If a choice were allowed between processes that
began with a delay, e.g. [3]a.0 + [2]b.0, then ei-
ther the choice would have to be resolved at the first
instant of time, leading to time nondeterminism (and
a very counter-intuitive system), or both branches of
the choice would have to run concurrently, which goes

prefix a.s

choice S1 + S2

delay [t]s

bounded delay [t1,t2]S
time-out (St + ... + Sn)[t>s
bounded time-out (S1 + ... + Sn)[t1,t2>S
data dependent choice S1 ++ S2

recursion equational definition

Table 1. Summary of concrete syntax for sequen-
tial processes

against the idea of a sequential process. As both of
these are unacceptable; we restrict the language so that
choices can only be made between processes which start
with an action prefix or another choice.

One of the reasons for uncertainty in the execution
times of programs is that there is no information avail-
able about the data on which the program is running
— we either don’t know what the data is or we choose
to ignore it to avoid complexity. In the pure language
no attempt is made to model data in AORTA, so any
branch in a sequential process which depends purely
on data (in particular on the outcome of a computa-
tion) rather than on communication (which is handled
by the existing choice) appears to be nondeterministic.
To allow for such branches, a data-dependent (or non-
deterministic) choice can be offered between two (or
more) processes: such a choice is written P++Q, and is
similar to the nondeterministic choice P M@ of CSP.

In summary, a sequential process may be con-
structed from action prefixes, summations (choices over
prefixed processes), time delays, time-outs over choices,
nondeterministic choices and guarded recursion. The
syntax is summarised in table 1. Each process has a
behaviour in time which says which actions it is pre-
pared to engage in, or in other words, at which of its
gates it is prepared to engage in communication. Obvi-
ously, for communication to take place there has to be
more than one process in the system — the way that a
system is constructed from its component processes is
kept separate from process definition in AORTA.

2.2 Parallel Composition and Commu-
nication

Apart from fixing the number of processes in a system
in order to provide reliable timing predictions there are
other steps which can be taken to aid implementabil-
ity. One area which is crucial to process algebras and
real-time systems is inter-process communication, and
this is perhaps where AORTA is most different from

existing process algebras.

In all of the common process algebras the commu-
nication actions of any process are visible to any other
process unless explicitly hidden or restricted, which
leads to problems on two fronts. From an implementa-
tion point of view this requires some way of broadcast-
ing all available actions to all processes. Even more
problems are encountered in implementing the multi-
way synchronisation of CSP and LOTOS, as witnessed
by the restriction to two-way communication in oc-
cam [12] and the need for a special protocol in LO-
TOS [17]. For a small to medium-sized system, which
is all we can hope to verify at the moment, the mech-
anism for providing such communication facilities may
be an excessively costly overhead, both in terms of im-
plementation and verification.

The availability of all actions to all processes can
also cause problems in verification, as checking for all
possible communications requires testing of each pair
of processes for communication on each action, leading
to an explosion in the number of checks to be made.
This explosion can be contained by restricting commu-
nication to a named set of channels between processes.

In the light of these problems, AORTA requires ex-
plicit connections to be made for a communication to
become possible, and these connections are made stat-
ically in the system definition. Each process has a set
of named gates (like the syntactic sort of CCS), and
communication links between processes are made by
explicitly naming pairs of gates to be linked. By using
explicit linking the restriction or hiding operators of
other process algebras are not needed, and by allow-
ing gates with different names to be linked, renaming
operators become unnecessary. Two or more processes
may be put in parallel using |, so that P|Q|R repre-
sents three processes in parallel, where each of P, Q,
and R is a sequential process. In order to enable com-
munication, a collection of processes may have some
pairs of gates linked, using a connection set written
in angle brackets after the processes. An element of
the connection set is a pair of gates to be connected,
along with bounds on the time for a communication
delay along that connection. External events, commu-
nications between processes and the external environ-
ment, also appear in the connection set. These are
distinguished by the name EXTERNAL and each has
an associated function which implements the event - a
device handler. The communication delay for an EX-
TERNAL is the bounded execution time of the device
handler.

The formal semantics of AORTA are presented else-

where [3], and is given as a stratified set of transition
rules. This gives rise to a transition system which

Motor

LcD | Panel |

Control Display Switches
Speed
Demand
Display data Display request
PC Logger data Bus Analogue
68000 Interface
Processor
Serial
Interface Parallel
Interface

PWM

J

Trip Signas

Printer port

MOTOR
Trip
PC Sensors

DATA LOGGER

Figure 1. Submersible Control - System Diagram

can be represented as a timed graph [1], so that au-
tomatic verification via real-time model-checking can
take place [15].

3. An Example Application

In order to illustrate how AORTA is employed in prac-
tice, we describe a simple embedded application and
show how a design is expressed in AORTA and imple-
mented to run on a single board computer.

International Research & Development Ltd., a sub-
sidiary of Rolls-Royce PLC, amongst its many ac-
tivities, designs electric propulsion systems for small
submersible vehicles [16], see Figure 1. The orig-
inal controller was implemented using an Intel 8051
micro-controller device and custom interface hardware,
but for the purpose of this case-study it was re-
implemented on a 68000 microprocessor to make use
of an existing AORTA kernel.

The control system performs four main functions,
namely speed control, motor overload protection, man-
agement of a user interface and the servicing of data
requests from an external data logger. The overall
structure of the system is illustrated in a ‘Process’ dia-
gram, Figure 2. The propulsion motor (which drives
a propellor) is controlled via a pulse-width modulation
(PWM) unit. The current propulsion speed demand,
a proportional signal, is read from a manual input and
is converted into appropriate PWM control values. In
order to avoid motor power demands which exceed the
rating of the power unit, the control function smooths-
out rapid changes in speed demand.

An external data logger is connected to the propul-
sion controller via a serial interface. The logger 1s re-
quired for field trials and fault finding to allow oper-
ating conditions to be recorded whilst the equipment

ardlog_tip restart pum_dkive i spoet_demand pam_cive_u

ol dorend pam_cive U
sat
Motor_speed
s, updte_ motor sop
e meters
e s
ystem parameters
N ched syem Iimits
System_parameters
updete, motor_speeed
update, LCD.
sevice logger
i o Sysom parandas
Service_logger LCD_display

daa operator_command_display_data

et
st

request_dda operator_command display_deta

Figure 2. Submersible Control - Process Diagram

is tested. At any time a request may be made by the
logger indicating the data required - motor current,
speed, etc. The propulsion controller responds by re-
plying with the most recently available data. A display
panel allows the operator to view system parameters
such as speed demand, motor temperature, etc.; the
value displayed is selected by a manual switch.

The system also detects overload conditions of tem-
perature and motor current. Should an overload be
detected, the motor will be brought to a controlled
stop and the speed controller restarted only after the
user has pressed a ‘restart’ control. Following an over-
load trip, the system 1is capable of servicing data log-
ger requests and providing current system parameters
via the user interface. Notice that the design includes
a process, System_parameters, which manages mutual
exclusion of the system parameter data.

The application illustrates the following features
characteristic of real-time applications:

e Both periodic and sporadic inputs
e Timing constraints

e Concurrency

In common with most control applications, the func-
tions of the propulsion controller are best implemented
by concurrent processes. In addition to being a conve-
nient design abstraction, concurrency allows the imple-
mentation of polling cycles of arbitrary frequency. It
would be difficult to manage the different polling rates
and sporadic behaviour of inputs and error conditions
using a single process or thread of execution and yet
guarantee timely behaviour. Concurrency also allows
the system to respond to independent inputs. Clearly,
it is necessary that any sporadic data logger requests

are handled in a way that does not interfere with over-
load trip recognition or control over the speed of the
motor.

The AORTA design of the propulsion control ap-
plication is provided in full in [5] along with an ex-
ample of a device driver. We shall provide a detailed
commentary on just one process, Init_and_check, since
this exploits all features of the AORTA notation. The
process Init_and_check is responsible for starting other
system activity, checking for overload conditions and
halting other proceses if necessary following an over-
load. Init_and_check begins by communicating the ini-
tial system status to the process System_parameters,
initialising the PWM drive and starting the processes
which control the motor and service the data logger:

Init_and_check =
set_system_parameters@!INITIAL_STATUSGO.
pwm_drive_i.start_update_motor.
start_logger.Check_safety

The process behaviour is then given by Safety_check
which initially offers a choice of the external events,
analog_trip and pwm_trip subject to a time-out:

Check_safety =
(analog_trip.Close_down
+
pwm_trip.Close_down)
[100.0,110.0>
(system_parametersQ@?parametersa@.
[0.0112,0.0293

Q@check_parameters(parameters,&over_limit) ;@]

(Check_safety ++ Q@over_limit@ Close_down))

These events would take place should the analog
interface or pulse-width-modulation units fail. The
event pwm_trip is defined in the connection set as an
EXTERNAL which is implemented by the C function
pwm_trip_event, also listed in [5].

The choice of the external events is offered for a pe-
riod of between 100 and 110 ms using a time-out. If nei-
ther event occurs in this period, the process continues
to read the latest values of motor current, temperature,
speed, etc. from System_parameters. A check is per-
formed on the data by the C function check_parameters
to determine if all readings are within their control
limits. Further process behaviour is decided by a
data-dependent choice (++) between Check_safety and
Close_down. If over_limit is false, the behaviour is de-
fined by Check_safety which repeats the safety check.
On the other hand, if over_limit is true, events are com-
municated with the motor controller and data logger to

close them down and no further action will take place
until a restart event occurs:

Close_down =
stop_update_motor.stop_logger.
restart.Init_and_check

The process Motor_speed controls the speed of the
drive motor by reading a speed demand, calculating
new PWM parameters and outputting these to the
drive unit. The process can be halted following an
overload since it polls the event stop about every 50
ms. Service_logger waits for requests for data from the
external logger, reads the required system parameters
and replies with the data. Like Motor_speed, this pro-
cess can be halted following an overload. LCD_display
waits for operator commands, reads the required sys-
tem parameters and displays the values. The remaing
process System_parameters provides mutually exclusive
access to system data from the other processes.

It is necessary that additional details are attached
to the AORTA design prior to code generation. The
annotations introduce the names of functions which
perform computation or input and output and other
details. Annotations are introduced within @...@ de-
limiters for the following reasons:

e in delays to define what code is used to perform
the computation,
e.g.,
[0.56,0.62Q@check(parameters, &over limit); @],

where check 1s a C function.

e in communication, annotations are used to
define what values are to be passed, e.g.,
speed@?demand@ causes a value to be received
using the event ‘speed’ and stored in the variable,
demand. The 7 annotation communicates with a
matching ! which sends a value.

e in EXTERNAL event connections, annotations
are used to define the names of device drivers used
to effect communication,

e.g., (Init_and_check trip) EXTERN AL
0.05,0.1@pwm trip; @). The names are simply C
functions.

¢ in data-dependent choice, annotations are used to
define how the choice is resolved using a C lan-
guage conditional statement,
e.g., + + Qpressure > critical@.

e in the definition of processes to declare variables
used within computations and to define functions
used for I/0.

e.g., Q#include < adec_to.h > Q.

Start

Create

specification

Modify Create AORTA Modif Develop code
i ny for /0 and
Design d Des
eson esgn processing
Edit AORTA :
design with Simulate AORTA Compute execution
estimated timings design times for code
Verify Properties Establish
by Model Checking Scheduler
behaviour
Adjust Timings
Compute elapsed
- time bounds
Actual Bounds on Timeouts
Adjust kernel behaviour
Verify Timing

Modify 1/0 or computation code

B Tool Support

Generate Code

Figure 3. The AORTA Development Process

4. System Development — An
AORTA Tool set

A toolset to support the design, validation, verification
and implementation of AORTA designs is under devel-
opment. The design and implementation process in-
volving the use of these tools is summarized in Figure
3. Considerable progress has been made in providing
tools to support some aspects of AORTA design and
implementation - such as code generation, design sim-
ulation and the management of code. However, work
remains to be completed in the areas of specification
and timing verification.

The following tools have been developed:

e Annotation Tool

AORTA designs are written and edited as ASCII
documents. An annotation tool facilitates the
editing and inspection of AORTA designs and an-
notations by managing them as hypertext docu-
ments. Thus, a design can be viewed without an-
notations if desired or the detailed annotations can
be inspected by opening hypertext links.

e Graphical Simulator
A simulator allows designs to be exercised at an
early stage to explore their temporal behaviour —

SubZ system

Init_and_check

Figure 4. Screen Shot of Simulator

the events that systems offer as time progresses.
The simulator allows the behaviour of a design to
be stepped through using a simple menu-driven in-
terface. There is also a facility for showing graph-
ically which communications are available - see
Figure 4. The simulator has proved to be a
valuable tool in providing feedback to the designer
prior to formal verification or code generation.

Code Timing

The bounded duration of computations and other
processing activities appear in the AORTA design.
The timing of code fragments is currently under-
taken by an analysis of assembly language gener-
ated by the compiler. Bounded times are derived
for computations and for inputs or outputs. A tool
1s used to calculate the elapsed time of these com-
putations and time-outs, taking into account the
time lost in scheduling and in managing events,
based on a an analysis of round-robin schedul-

ing [4].

Verification

Verification that a design exhibits desired proper-
ties is facilitated by a process of timed state graph
construction and model checking [15]. A number
of different types of properties can be verified. For
example, in the context of the earlier example, one
might seek to establish a bounded response such
that following the input of the motor current which
indicates an overload, the motor speed control pro-
cess will stop within a specified time period.

Although the submersible control system cannot
be regarded as large, only 5 concurrent processes
and a total of 19 events, in fact the system can

be in any of about 7.10% states. The verification
process 1s extremely demanding, requiring consid-
erable computer time to check simple properties;
the techniques and algorithms employed are sub-
ject to further development.

e The Kernel
The execution of processes comprising an AORTA
system 1s managed by a dedicated software ker-
nel [4]. The kernel schedules processes in turn to
share access to the CPU. The processes call on the
kernel to undertake time-out operations, synchro-
nise, communicate and perform input and output.

It 1s of paramount importance that the kernel’s
functions are fully predictable, so that each pro-
cess has a known access to the CPU and that event
synchronizations have predictable durations. The
kernel uses a simple scheduling mechanism which
gives each process a fixed time slice in a round-
robin sequence, although other methods such as
fixed priority scheduling are possible. Thus, pro-
cesses have a guaranteed share of CPU time and
can be treated as independent threads of execution
between synchronising points. Processes wishing
to synchronise or communicate employ the kernel
to achieve this; between each process time-slice,
the kernel looks for possible communications and
manages their completion. The time bounds of
context switching and the management of inter-
process synchronization have been determined by
an analysis of the kernel [4]. Thus, it is possible
to verify that the times expressed in the AORTA
design, to complete any processing and undertake
synchronizations, are correct.

e Code Generator
A code generator translates the AORTA design by
making the necessary calls to the kernel and incor-
porates the annotations in the compiler-ready out-
put. Process code, device drivers and the kernel
are linked to build a system which is downloaded
onto the target processor.

5. Conclusions

There is a pressing need for reliable methods of design-
ing and implementing embedded real-time software.
Current methods lack the rigour which admits a quan-
tified analysis of performance prior to implementation.

We have described a formal approach to embedded
systems development which does not rely on testing for
verification. Instead, the required temporal behaviour
of the system is expressed in a design which can be

implemented automatically following annotation. The
major benefit of adopting a formal treatment is that
implemented systems will have the desired timely be-
haviour expressed in a design and will meet deadlines
under all circumstances. The technique has been il-
lustrated using an example which embodies many of
the features characteristic of small embedded systems;
we believe this demonstrates that this formal approach
can be applied to problems of practical significance.
A toolset has been described which supports the devel-
opment AORTA applications during design, validation,
verification and implementation.

Current and future work on AORTA includes the
implementation of ‘industrial strength’ specification,
design and timing tools to facilitate AORTA systems
development. Also of interest are the application of
alternative scheduling techniques to the round-robin
mechanism described in this paper, the distributed im-
plementation of AORTA designs using CAN [2] and
the use of a commercial real-time kernel to support

AORTA.

6. Acknowledgements

The authors are grateful to International Research
& Development Ltd. (part of Rolls-Royce Indus-
trial Power Group) for permission to publish details of
the submersible control system. The work reported in
this paper was undertaken with the financial support of
both Northern IT Research and The University
of Northumbria at Newcastle.

References

[1] R Alur, C Courcoubetis, and D Dill. Model-
checking for real-time systems. In IEEE Fifth An-
nual Symposium On Logic In Computer Science,

Philadelphia, pages 414-425, June 1990.

[2] Bosch GmbH. CAN specification, version 2.0 edi-
tion, 1992.

[3] S. Bradley, W. Henderson, D. Kendall, and
A. Robson. Application-oriented real-time alge-
bra. Software Engineering Journal, pages 201-212,

September 1994.

[4] S. Bradley, W. Henderson, D. Kendall,
A. Robson. A formally based hard

time kernel. Microprocessors and Microsystems,

18(9):513-521, November 1994.

and
real-

[6] S Bradley, W D Henderson, D Kendall, A P
Robson, and S Hawkes. A formal design and

[16]

[17]

implementation method for systems with pre-
dictable performance. Technical Report NPC-
TRS-95-2, Department of Computing, University
of Northumbria, UK, 1995. Submitted for publi-

cation.

J.A. Clark, J.A. McDermid, and A.Burns.
Analysing high-integrity systems. Computing and
Control Engineering Journal, 5(5):18-23, Febru-
ary 1994.

W.J Cullyer and N.Storey. Tools and techniques
for the testing of safety-critical software. Comput-
ing and Control Engineering Journal, 5(5):239-
244, October 1994.

D.Davis. Safety-critical systems - legal liabil-
ity. Computing and Control Engineering Journal,
pages 13-17, February 1994.

J.F. Groote. Transition system specifications
with negative premises. In J.C.M. Baeton and
J.W Klop, editors, CONCUR ’90, Lecture Notes
wn Computer Science 458, pages 332-341. 1990.

C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

International Standards Organisation. Informa-
tion processing systems - Open Systems Intercon-
nection - LOTOS - A formal description technique
based on the temporal ordering of observable be-

haviour, 02-15 edition, 1989.

G. Jones. Programming in Occam. Prentice hall,

1987.

N.G. Leveson and C.S. Turner. An investiga-
tion of the Therac-25 accidents. IEEE Computer,
26(7):18-41, July 1993.

R. Milner. Communication and Concurrency.
Prentice Hall, New York, 1989.

S.Bradley, W.D Henderson, D.Kendall, and A.P
Robson. Validation, verification and implemen-
tation of timed protocols using AORTA. In 15th
International Symposium on Protocol Specification
Testing and Verification, June 1995.

S.Hawkes. A PWM Motor Controller - Functional
Specification. International Research and Devel-
opment Ltd, ird/93-4project edition, November
1994.

R. Sisto, L. Ciminiera, and A. Valenzano. A pro-
tocol for multirendezvous of lotos processes. IEEE
Transactions on Computers, 40(1):437-446, April
1991.

