
A Formal Design and Implementation Method For Real-TimeEmbedded SystemsSteven Bradley William Henderson David KendallAdrian RobsonDepartment of Computing, University of Northumbria at Newcastle, UKStephen HawkesInternational Research & Development Ltd., Newcastle-upon-Tyne, UKAbstractThis paper tackles the problem of using formal meth-ods for practical real-time system development and ver-i�cation, and is based on a real example. Many formalmethods for real-time systems have been proposed, butthis technique (AORTA) is one of the few to addressthe issue of how formal designs are to be implemented.Earlier papers on AORTA have been based on providingthe formal semantics of the language, and on particularaspects of implementation or veri�cation. This paperconcentrates on setting AORTA within the developmentlife cycle, and demonstrating that the approach can beadopted for non-trivial examples.1. IntroductionMany computer systems are required not only to de-liver correct results, but to deliver those results at thecorrect time | such systems are called real-time sys-tems. These systems are most often to be found in con-trol equipment, such as automatic washing machines,
y-by-wire systems, life-support machines, car brakingsystems, or industrial plant controllers. Many safetycritical applications, where correct functioning is of vi-tal importance because of the hazardous results of mal-function, fall into the category of real-time systems;many of the applications already mentioned would beclassi�ed as safety critical. In addition to the risks ofphysical harm which might be caused by faulty soft-ware, there is the increasing risk of �nancial loss as-sociated with providing functionality with software. Aproduct recall following the detection of an error inembedded software could be very costly. Software isperhaps the most easily modi�ed of all technical prod-

ucts. However, the correction of faulty software in em-bedded systems can become just as much a �nancialburden to the manufacturer as the replacement of afaulty mechanical handbrake in an automobile.Implementors of real-time systems will be aware ofthe di�culty of predicting performance at an earlystage in the development cycle. Usually, it is only pos-sible to measure performance at a late stage in theimplementation of the software and hardware. Evenwhen a system is available for evaluation, verifyingthat it meets timing requirements will simply involveconducting (possibly many) tests with the system un-der di�erent loading conditions. It is common experi-ence that concurrent real-time software exhibits com-plex behaviour with extremely large numbers of states.With anything other than a trivial application, testingis likely to consider only a small fraction of possible be-haviours of the system. Clearly, providing con�dencethat a system will meet deadlines under every circum-stance by testing alone will not in general be possible.Cullyer and Storey [7] outline the problems of veri-fying the real-time behaviour of software and describetesting techniques and strategies for safety-critical soft-ware; they conclude that current tool support for test-ing such software is weak.A further problem of the testing approach is thatmeasurements made on the system may well point toinadequacies in the implementation or perhaps in thedesign. Reasoning about where the problem lies can bevery di�cult since design decisions are often informallylinked to the implementation. This encourages devel-opers to avoid performance issues until the implemen-tation stage. The ability to reason about performanceat an early stage, during design, seems to be an impor-tant goal. Clark et al [6] underline the inadequacy oftesting as a means of verifying real-time systems andemphasise the need to provide high con�dence early in



the development process that timing requirements willbe met by the �nal system.The quality of software for high pro�le safety-criticalapplications such as aviation or automobile tractioncontrol is clearly a concern. However, there is an in-creasing use of embedded controllers in a wide range ofproducts such as kitchen appliances, heating, �re detec-tion and security systems. These systems can also posea threat if poorly programmed; for example, a faultycontroller for a washing machine could conceivably cre-ate a hazardous condition by allowing the water heaterto remain on when the machine is dry.Recent European law [8] places the responsibilityfor producing safe embedded systems on the softwaredeveloper; it will become essential that developers usereliable methods and tools to demonstrate that theyhave discharged their responsibility. What methodsare deemed reliable is changing as the subject devel-ops through research and standards respond; devel-opers might reasonably be expected to be aware ofbest-practice and use working methods which re
ectthis. Currently, highly rigorous, mathematically-basedmethods are mandatory only for defence contract work.Although the use of formal techniques during soft-ware development can provide greater con�dence in thequality of designs, they do not necessarily lead to astraightforward implementaion as executable code.An alternative approach to system veri�cation, per-haps best characterised by the phrase \correct by de-sign", challenges the traditional approach of testing.However, formal mathematical techniques, which aimto produce correct systems, are often far removed frompractical implementations. In particular, very littlework exists on relating real-time performance of sys-tems with the mathematical models used to reasonabout real-time behaviour. The remainder of the pa-per discusses a technique which has a formal basis, butwhich admits veri�able implementation; a real exampleis used to demonstrate the method in practice.2. The Language of AORTAAORTA Application Oriented Real-Time Algebra at-tempts to address some of the problems faced by de-signers of real-time systems by providing a formal lan-guage for system design and veri�cation, which dealswith quantitative time, and relates directly to imple-mented systems. In order to ensure implementabilityof designs, the language is more restrictive than manyother timed formalisms, which can be used to model awide range of possible behaviours, many of them unim-plementable. The basic language is a timed process al-gebra, related to the timed variants of process algebras

like CCS [14], LOTOS [11] and CSP [10]. Features ofAORTA which are not found in other timed processalgebras include� static de�nition of concurrency parallelism, in or-der to simplify timing analysis of processor multi-tasking,� static de�nition of communication paths, in orderto simplify timing analysis of inter-process com-munication,� time bounds for delays and time-outs, to cope withthe implementation-related problems of jitter andclock discretisation.These features do, in some cases, restrict the expressiv-ity of the language for modelling and speci�cation pur-poses, but the language is not meant to address theseproblems: it is intended purely as a design language.We believe that these restrictions do not seriously ham-per the ability of the language to design real real-timesystems, and the notation has been exercised on sev-eral medium-sized examples, such as the submersiblecontroller considered in this paper. Rather than try tode�ne a wide-spectrum language, which can be used tode�ne systems at di�erent levels of abstraction, eachrelated by a re�nement proof technique, we have cho-sen to use a timed temporal logic for the speci�cation,with model-checking as the proof method. This al-lows us to focus the language more closely on design,and to avoid proof techniques such as timed bisimula-tion and timed re�nement, which do not extend wellfrom the untimed setting to the timed setting. Moredetailed justi�cation of the choices made in choosingthe language constructs and proof techniques can befound in [3]. The aim of this paper is to describe howAORTA can be applied, but �rst the language needsto be introduced.Of the common untimed algebras, AORTA is mostsimilar to CCS, both in notation (. for action pre�xingand + for choice) and in semantics (only two-way syn-chronisation allowed), but even apart from the timeconsiderations there are some important di�erences.One of the restrictions placed on the language to aidimplementation is that the number of processes in asystem may not vary, and this restriction is enforced byinsisting that all parallel composition should happen atthe top level. This gives rise to two levels of descrip-tion: one for the sequential processes within a system,and another for the parallelism and connectivity of thesystem. Some familiarity with CCS is assumed in thefollowing.



2.1 Sequential ProcessesThe description of sequential processes is where the re-lation of AORTA to CCS is shown most strongly. Ac-tions can be o�ered, which must be matched by a com-municating partner before the process can proceed, anda choice may be o�ered between a number of actions.As in CCS, action pre�x and choice (sometimes calledsummation) are represented by . and + respectively,with 0 for the null process which o�ers no actions. Re-cursion can be written using the same equational for-mat as used in CCS (e.g. A = a.A), but all recursionmust be guarded (i.e. all process names must appearinside an action pre�x). The other constructs do nothave analogues in CCS, and are concerned with includ-ing time information into the process description.There are two constructs which are used to intro-duce time, and each of these has a deterministic andnondeterministic form. The �rst construct is a delay,which causes the process to pause for the amount oftime speci�ed, during which time no actions are of-fered | time consuming operations like computationare represented in this way. As exact timings are not al-ways known for such delays, the delay may be speci�edwith an upper and lower bound, rather than a precise�gure. A process which delays for precisely t time unitsbefore behaving like S is written [t]S, and if the delayis bounded by times t1 and t2 the process is written[t1,t2]S. The second construct is a time-out exten-sion to summation, so that if none of the branches ofthe choice are taken up within the given time, controlis transferred to another branch. Again, depending onhow the time-out is implemented, a precise �gure forthe time at which control is transferred may not beavailable, so an interval of possibilities can be given in-stead. A choice process S which times out to process Tif no communication happens within time t is writtenS [t> T, and if the time is bounded by t1 and t2 it iswritten S [t1,t2> T.Having given the time behaviour of our new con-structs it is necessary to go back to describe the timebehaviour of pre�x and choice. A simple pre�x forcesthe process to wait until communication can take placeon the named channel, so the process a.S can wait forany length of time without changing, provided commu-nication is not possible. Consideration of how a choiceshould behave in time leads us to restrict choice toprocesses which start with an action pre�x or anotherchoice. If a choice were allowed between processes thatbegan with a delay, e.g. [3]a.0 + [2]b.0, then ei-ther the choice would have to be resolved at the �rstinstant of time, leading to time nondeterminism (anda very counter-intuitive system), or both branches ofthe choice would have to run concurrently, which goes

pre�x a.Schoice S1 + S2delay [t]Sbounded delay [t1,t2]Stime-out (S1 + ... + Sn)[t>Sbounded time-out (S1 + ... + Sn)[t1,t2>Sdata dependent choice S1 ++ S2recursion equational de�nitionTable 1. Summary of concrete syntax for sequen-tial processesagainst the idea of a sequential process. As both ofthese are unacceptable, we restrict the language so thatchoices can only be made between processes which startwith an action pre�x or another choice.One of the reasons for uncertainty in the executiontimes of programs is that there is no information avail-able about the data on which the program is running| we either don't know what the data is or we chooseto ignore it to avoid complexity. In the pure languageno attempt is made to model data in AORTA, so anybranch in a sequential process which depends purelyon data (in particular on the outcome of a computa-tion) rather than on communication (which is handledby the existing choice) appears to be nondeterministic.To allow for such branches, a data-dependent (or non-deterministic) choice can be o�ered between two (ormore) processes: such a choice is written P++Q, and issimilar to the nondeterministic choice P uQ of CSP.In summary, a sequential process may be con-structed from action pre�xes, summations (choices overpre�xed processes), time delays, time-outs over choices,nondeterministic choices and guarded recursion. Thesyntax is summarised in table 1. Each process has abehaviour in time which says which actions it is pre-pared to engage in, or in other words, at which of itsgates it is prepared to engage in communication. Obvi-ously, for communication to take place there has to bemore than one process in the system | the way that asystem is constructed from its component processes iskept separate from process de�nition in AORTA.2.2 Parallel Composition and Commu-nicationApart from �xing the number of processes in a systemin order to provide reliable timing predictions there areother steps which can be taken to aid implementabil-ity. One area which is crucial to process algebras andreal-time systems is inter-process communication, andthis is perhaps where AORTA is most di�erent from



existing process algebras.In all of the common process algebras the commu-nication actions of any process are visible to any otherprocess unless explicitly hidden or restricted, whichleads to problems on two fronts. From an implementa-tion point of view this requires some way of broadcast-ing all available actions to all processes. Even moreproblems are encountered in implementing the multi-way synchronisation of CSP and LOTOS, as witnessedby the restriction to two-way communication in oc-cam [12] and the need for a special protocol in LO-TOS [17]. For a small to medium-sized system, whichis all we can hope to verify at the moment, the mech-anism for providing such communication facilities maybe an excessively costly overhead, both in terms of im-plementation and veri�cation.The availability of all actions to all processes canalso cause problems in veri�cation, as checking for allpossible communications requires testing of each pairof processes for communication on each action, leadingto an explosion in the number of checks to be made.This explosion can be contained by restricting commu-nication to a named set of channels between processes.In the light of these problems, AORTA requires ex-plicit connections to be made for a communication tobecome possible, and these connections are made stat-ically in the system de�nition. Each process has a setof named gates (like the syntactic sort of CCS), andcommunication links between processes are made byexplicitly naming pairs of gates to be linked. By usingexplicit linking the restriction or hiding operators ofother process algebras are not needed, and by allow-ing gates with di�erent names to be linked, renamingoperators become unnecessary. Two or more processesmay be put in parallel using |, so that P|Q|R repre-sents three processes in parallel, where each of P, Q,and R is a sequential process. In order to enable com-munication, a collection of processes may have somepairs of gates linked, using a connection set writtenin angle brackets after the processes. An element ofthe connection set is a pair of gates to be connected,along with bounds on the time for a communicationdelay along that connection. External events, commu-nications between processes and the external environ-ment, also appear in the connection set. These aredistinguished by the name EXTERNAL and each hasan associated function which implements the event - adevice handler. The communication delay for an EX-TERNAL is the bounded execution time of the devicehandler.The formal semantics of AORTA are presented else-where [3], and is given as a strati�ed set of transitionrules. This gives rise to a transition system which

Interface

Analogue

Interface

Parallel

Bus

Processor

68000

PC Logger data

Serial
Interface

Trip
Sensors

Trip Signals

MOTOR

PWM

Printer port

DATA LOGGER

PC

Demand
Speed

Motor Panel
SwitchesControl

LCD
Display

Display data Display request

Figure 1. Submersible Control - System Diagramcan be represented as a timed graph [1], so that au-tomatic veri�cation via real-time model-checking cantake place [15].3. An Example ApplicationIn order to illustrate how AORTA is employed in prac-tice, we describe a simple embedded application andshow how a design is expressed in AORTA and imple-mented to run on a single board computer.International Research & Development Ltd., a sub-sidiary of Rolls-Royce PLC, amongst its many ac-tivities, designs electric propulsion systems for smallsubmersible vehicles [16], see Figure 1. The orig-inal controller was implemented using an Intel 8051micro-controller device and custom interface hardware,but for the purpose of this case-study it was re-implemented on a 68000 microprocessor to make useof an existing AORTA kernel.The control system performs four main functions,namely speed control, motor overload protection, man-agement of a user interface and the servicing of datarequests from an external data logger. The overallstructure of the system is illustrated in a `Process' dia-gram, Figure 2. The propulsion motor (which drivesa propellor) is controlled via a pulse-width modulation(PWM) unit. The current propulsion speed demand,a proportional signal, is read from a manual input andis converted into appropriate PWM control values. Inorder to avoid motor power demands which exceed therating of the power unit, the control function smooths-out rapid changes in speed demand.An external data logger is connected to the propul-sion controller via a serial interface. The logger is re-quired for �eld trials and fault �nding to allow oper-ating conditions to be recorded whilst the equipment



Init_and_check Motor_speed

Service_logger LCD_display

System_parameters

init

set_system_parameters

check_system_limits

system_parameters

update_motor_speed

system_parameters

service_logger

system_parameters

update_LCD

system_parameters

start_update_motor start

stop_update_motor stop

start_logger

start

stop_logger

stop

pwm_drive_i

pwm_drive_i

analog_trip

analog_trip

restart

restart

pwm_trippwm_trip

speed_demand

speed_demand

pwm_drive_u

pwm_drive_u

request_data

request_data

send_data

send_data

operator_command

operator_command

display_data

display_dataFigure 2. Submersible Control - Process Diagramis tested. At any time a request may be made by thelogger indicating the data required - motor current,speed, etc. The propulsion controller responds by re-plying with the most recently available data. A displaypanel allows the operator to view system parameterssuch as speed demand, motor temperature, etc.; thevalue displayed is selected by a manual switch.The system also detects overload conditions of tem-perature and motor current. Should an overload bedetected, the motor will be brought to a controlledstop and the speed controller restarted only after theuser has pressed a `restart' control. Following an over-load trip, the system is capable of servicing data log-ger requests and providing current system parametersvia the user interface. Notice that the design includesa process, System parameters, which manages mutualexclusion of the system parameter data.The application illustrates the following featurescharacteristic of real-time applications:� Both periodic and sporadic inputs� Timing constraints� ConcurrencyIn commonwith most control applications, the func-tions of the propulsion controller are best implementedby concurrent processes. In addition to being a conve-nient design abstraction, concurrency allows the imple-mentation of polling cycles of arbitrary frequency. Itwould be di�cult to manage the di�erent polling ratesand sporadic behaviour of inputs and error conditionsusing a single process or thread of execution and yetguarantee timely behaviour. Concurrency also allowsthe system to respond to independent inputs. Clearly,it is necessary that any sporadic data logger requests

are handled in a way that does not interfere with over-load trip recognition or control over the speed of themotor.The AORTA design of the propulsion control ap-plication is provided in full in [5] along with an ex-ample of a device driver. We shall provide a detailedcommentary on just one process, Init and check, sincethis exploits all features of the AORTA notation. Theprocess Init and check is responsible for starting othersystem activity, checking for overload conditions andhalting other proceses if necessary following an over-load. Init and check begins by communicating the ini-tial system status to the process System parameters,initialising the PWM drive and starting the processeswhich control the motor and service the data logger:Init_and_check =set_system_parameters@!INITIAL_STATUS@.pwm_drive_i.start_update_motor.start_logger.Check_safetyThe process behaviour is then given by Safety checkwhich initially o�ers a choice of the external events,analog trip and pwm trip subject to a time-out:Check_safety =(analog_trip.Close_down+pwm_trip.Close_down)[100.0,110.0>(system_parameters@?parameters@.[0.0112,0.0293@check_parameters(parameters,&over_limit);@](Check_safety ++ @over_limit@ Close_down))These events would take place should the analoginterface or pulse-width-modulation units fail. Theevent pwm trip is de�ned in the connection set as anEXTERNAL which is implemented by the C functionpwm trip event, also listed in [5].The choice of the external events is o�ered for a pe-riod of between 100 and 110 ms using a time-out. If nei-ther event occurs in this period, the process continuesto read the latest values of motor current, temperature,speed, etc. from System parameters. A check is per-formed on the data by the C function check parametersto determine if all readings are within their controllimits. Further process behaviour is decided by adata-dependent choice (++) between Check safety andClose down. If over limit is false, the behaviour is de-�ned by Check safety which repeats the safety check.On the other hand, if over limit is true, events are com-municated with the motor controller and data logger to



close them down and no further action will take placeuntil a restart event occurs:Close_down =stop_update_motor.stop_logger.restart.Init_and_checkThe process Motor speed controls the speed of thedrive motor by reading a speed demand, calculatingnew PWM parameters and outputting these to thedrive unit. The process can be halted following anoverload since it polls the event stop about every 50ms. Service logger waits for requests for data from theexternal logger, reads the required system parametersand replies with the data. Like Motor speed, this pro-cess can be halted following an overload. LCD displaywaits for operator commands, reads the required sys-tem parameters and displays the values. The remaingprocess System parameters provides mutually exclusiveaccess to system data from the other processes.It is necessary that additional details are attachedto the AORTA design prior to code generation. Theannotations introduce the names of functions whichperform computation or input and output and otherdetails. Annotations are introduced within @:::@ de-limiters for the following reasons:� in delays to de�ne what code is used to performthe computation,e.g.,[0:56; 0:62@check(parameters;&over limit); @],where check is a C function.� in communication, annotations are used tode�ne what values are to be passed, e.g.,speed@?demand@ causes a value to be receivedusing the event `speed' and stored in the variable,demand. The ? annotation communicates with amatching ! which sends a value.� in EXTERNAL event connections, annotationsare used to de�ne the names of device drivers usedto e�ect communication,e.g., (Init and check:trip; EXTERNAL :0:05; 0:1@pwm trip; @). The names are simply Cfunctions.� in data-dependent choice, annotations are used tode�ne how the choice is resolved using a C lan-guage conditional statement,e.g., + + @pressure > critical@.� in the de�nition of processes to declare variablesused within computations and to de�ne functionsused for I/O.e.g., @#include < adc io:h > @.

Verify Timing

Verify Properties
by Model Checking

Develop code
for I/O and
processing

design

Simulate AORTA

Create AORTA

design

Create

specification

Adjust Timings

Actual Bounds on Timeouts

Adjust kernel behaviour

Modify I/O or computation code

estimated timings
design with

Edit AORTA

Tool Support

behaviour

Establish
Scheduler

Design
Modify Modify

Design

Start

times for code
Compute execution

Compute elapsed

time bounds

Generate CodeFigure 3. The AORTA Development Process4. System Development { AnAORTA Tool setA toolset to support the design, validation, veri�cationand implementation of AORTA designs is under devel-opment. The design and implementation process in-volving the use of these tools is summarized in Figure3. Considerable progress has been made in providingtools to support some aspects of AORTA design andimplementation - such as code generation, design sim-ulation and the management of code. However, workremains to be completed in the areas of speci�cationand timing veri�cation.The following tools have been developed:� Annotation ToolAORTA designs are written and edited as ASCIIdocuments. An annotation tool facilitates theediting and inspection of AORTA designs and an-notations by managing them as hypertext docu-ments. Thus, a design can be viewed without an-notations if desired or the detailed annotations canbe inspected by opening hypertext links.� Graphical SimulatorA simulator allows designs to be exercised at anearly stage to explore their temporal behaviour {



Figure 4. Screen Shot of Simulatorthe events that systems o�er as time progresses.The simulator allows the behaviour of a design tobe stepped through using a simple menu-driven in-terface. There is also a facility for showing graph-ically which communications are available - seeFigure 4. The simulator has proved to be avaluable tool in providing feedback to the designerprior to formal veri�cation or code generation.� Code TimingThe bounded duration of computations and otherprocessing activities appear in the AORTA design.The timing of code fragments is currently under-taken by an analysis of assembly language gener-ated by the compiler. Bounded times are derivedfor computations and for inputs or outputs. A toolis used to calculate the elapsed time of these com-putations and time-outs, taking into account thetime lost in scheduling and in managing events,based on a an analysis of round-robin schedul-ing [4].� Veri�cationVeri�cation that a design exhibits desired proper-ties is facilitated by a process of timed state graphconstruction and model checking [15]. A numberof di�erent types of properties can be veri�ed. Forexample, in the context of the earlier example, onemight seek to establish a bounded response suchthat following the input of the motor current whichindicates an overload, the motor speed control pro-cess will stop within a speci�ed time period.Although the submersible control system cannotbe regarded as large, only 5 concurrent processesand a total of 19 events, in fact the system can

be in any of about 7:104 states. The veri�cationprocess is extremely demanding, requiring consid-erable computer time to check simple properties;the techniques and algorithms employed are sub-ject to further development.� The KernelThe execution of processes comprising an AORTAsystem is managed by a dedicated software ker-nel [4]. The kernel schedules processes in turn toshare access to the CPU. The processes call on thekernel to undertake time-out operations, synchro-nise, communicate and perform input and output.It is of paramount importance that the kernel'sfunctions are fully predictable, so that each pro-cess has a known access to the CPU and that eventsynchronizations have predictable durations. Thekernel uses a simple scheduling mechanism whichgives each process a �xed time slice in a round-robin sequence, although other methods such as�xed priority scheduling are possible. Thus, pro-cesses have a guaranteed share of CPU time andcan be treated as independent threads of executionbetween synchronising points. Processes wishingto synchronise or communicate employ the kernelto achieve this; between each process time-slice,the kernel looks for possible communications andmanages their completion. The time bounds ofcontext switching and the management of inter-process synchronization have been determined byan analysis of the kernel [4]. Thus, it is possibleto verify that the times expressed in the AORTAdesign, to complete any processing and undertakesynchronizations, are correct.� Code GeneratorA code generator translates the AORTA design bymaking the necessary calls to the kernel and incor-porates the annotations in the compiler-ready out-put. Process code, device drivers and the kernelare linked to build a system which is downloadedonto the target processor.5. ConclusionsThere is a pressing need for reliable methods of design-ing and implementing embedded real-time software.Current methods lack the rigour which admits a quan-ti�ed analysis of performance prior to implementation.We have described a formal approach to embeddedsystems development which does not rely on testing forveri�cation. Instead, the required temporal behaviourof the system is expressed in a design which can be



implemented automatically following annotation. Themajor bene�t of adopting a formal treatment is thatimplemented systems will have the desired timely be-haviour expressed in a design and will meet deadlinesunder all circumstances. The technique has been il-lustrated using an example which embodies many ofthe features characteristic of small embedded systems;we believe this demonstrates that this formal approachcan be applied to problems of practical signi�cance.A toolset has been described which supports the devel-opment AORTA applications during design, validation,veri�cation and implementation.Current and future work on AORTA includes theimplementation of `industrial strength' speci�cation,design and timing tools to facilitate AORTA systemsdevelopment. Also of interest are the application ofalternative scheduling techniques to the round-robinmechanism described in this paper, the distributed im-plementation of AORTA designs using CAN [2] andthe use of a commercial real-time kernel to supportAORTA.6. AcknowledgementsThe authors are grateful to International Research& Development Ltd. (part of Rolls-Royce Indus-trial Power Group) for permission to publish details ofthe submersible control system. The work reported inthis paper was undertaken with the �nancial support ofboth Northern IT Research and The Universityof Northumbria at Newcastle.References[1] R Alur, C Courcoubetis, and D Dill. Model-checking for real-time systems. In IEEE Fifth An-nual Symposium On Logic In Computer Science,Philadelphia, pages 414{425, June 1990.[2] Bosch GmbH. CAN speci�cation, version 2.0 edi-tion, 1992.[3] S. Bradley, W. Henderson, D. Kendall, andA. Robson. Application-oriented real-time alge-bra. Software Engineering Journal, pages 201{212,September 1994.[4] S. Bradley, W. Henderson, D. Kendall, andA. Robson. A formally based hard real-time kernel. Microprocessors and Microsystems,18(9):513{521, November 1994.[5] S Bradley, W D Henderson, D Kendall, A PRobson, and S Hawkes. A formal design and

implementation method for systems with pre-dictable performance. Technical Report NPC-TRS-95-2, Department of Computing, Universityof Northumbria, UK, 1995. Submitted for publi-cation.[6] J.A. Clark, J.A. McDermid, and A.Burns.Analysing high-integrity systems. Computing andControl Engineering Journal, 5(5):18{23, Febru-ary 1994.[7] W.J Cullyer and N.Storey. Tools and techniquesfor the testing of safety-critical software. Comput-ing and Control Engineering Journal, 5(5):239{244, October 1994.[8] D.Davis. Safety-critical systems - legal liabil-ity. Computing and Control Engineering Journal,pages 13{17, February 1994.[9] J.F. Groote. Transition system speci�cationswith negative premises. In J.C.M. Baeton andJ.W.Klop, editors, CONCUR '90, Lecture Notesin Computer Science 458, pages 332{341. 1990.[10] C. A. R. Hoare. Communicating Sequential Pro-cesses. Prentice Hall, 1985.[11] International Standards Organisation. Informa-tion processing systems - Open Systems Intercon-nection - LOTOS - A formal description techniquebased on the temporal ordering of observable be-haviour, 02-15 edition, 1989.[12] G. Jones. Programming in Occam. Prentice hall,1987.[13] N.G. Leveson and C.S. Turner. An investiga-tion of the Therac-25 accidents. IEEE Computer,26(7):18{41, July 1993.[14] R. Milner. Communication and Concurrency.Prentice Hall, New York, 1989.[15] S.Bradley, W.D Henderson, D.Kendall, and A.PRobson. Validation, veri�cation and implemen-tation of timed protocols using AORTA. In 15thInternational Symposium on Protocol Speci�cationTesting and Veri�cation, June 1995.[16] S.Hawkes. A PWM Motor Controller - FunctionalSpeci�cation. International Research and Devel-opment Ltd, ird/93-4project edition, November1994.[17] R. Sisto, L. Ciminiera, and A. Valenzano. A pro-tocol for multirendezvous of lotos processes. IEEETransactions on Computers, 40(1):437{446, April1991.


