
Validation, Veri�cation and Implementation of Timed Protocolsusing AORTASteven Bradley William Henderson David Kendall Adrian Robson �February 15, 1995AbstractAORTA is an implementable timed process algebra which has been proposed as a design languagefor hard real-time systems. In this paper we show how AORTA can be used to design and modeltimed protocols, illustrated by the alternating bit protocol. We also describe tools which have beendeveloped for simulation, veri�cation and automatic implementation of AORTA systems, and outlinea relationship between the formal models which are veri�ed and the code which is generated.1 IntroductionCommunication protocols and embedded hard real-time systems share many important features | tim-ing, concurrency and communication are central issues to the designers of both. Because of this closerelationship, many embedded system design techniques can be applied to communication protocols andvice-versa, and in this paper we show how AORTA [4] can be applied to timed communication proto-cols. The main distinction between AORTA and other timed process algebras such as ET-LOTOS [14],TCSP [22] and TCCS [17] is that AORTA is aimed speci�cally at design, whereas other algebras aremeant as wide-spectrum languages, useful for speci�cation, design, and modelling. Because of its focus,AORTA is in some ways more restrictive and in some ways more expressive than these languages, to guar-antee than designs can be implemented directly. Rather than using timed bisimulations or preorders,which relate sytems at di�erent levels of abstraction in the same language, we prefer to use timed model-checking [1], based on temporal logic, as this makes it much easier to construct abstract speci�cations.To demonstrate the practicality of AORTA, a set of tools has been developed, which allow systems to besimulated, veri�ed and automatically implemented.The structure of the paper is as follows. After introducing the syntax of AORTA in section 2, a de-scription of the alternating bit protocol in AORTA is given in section 3; this example is used throughoutthe paper to illustrate the techniques described. Validation and testing of AORTA systems by simula-tion is described in section 4, and veri�cation by model-checking is explained in section 5, including atranslation from AORTA to timed graphs. These timed graphs are used not only in veri�cation, butalso in implementation, providing assurance that veri�cation theorems apply directly to the implemen-tation. We also show in sections 4 and 5 how AORTA can be used to model di�erent assumptions aboutthe behaviour of a communication line, ranging from bounds on the time taken to transmit, to the lossof messages. The use of code generation techniques, and their relationship to timed graphs, are thenoutlined in section 6, before the concluding section 7.�The authors are with the Department of Computing, University of Northumbria at Newcastle, Ellison Place, Newcastleupon Tyne, NE1 8ST, UK 1



2 AORTA syntaxAORTA is a timed process algebra, and draws on untimed process algebras, in particular CCS [16], forits syntax. Each AORTA system is statically de�ned as a parallel composition of sequential processes,which may intercommunicate. Each individual process may wait for communication (all communication issynchronised and so blocks progress), perform computation, branch between di�erent behaviours, recurse,or do nothing. The simplest process which can be de�ned isA = a.Awhich waits for communication on gate a, before behaving like process A. In other words the processis always ready to o�er a actions. A simple bu�er process can be de�ned by adding computation andrecursion, so thatA=a.[5.0,15.0]b.Adescribes a process which communicates on gate a (possibly accepting some data), performs some com-putation, which takes between 5.0 and 15.0 time units to complete, before communicating on gate b(possibly o�ering some data) and returning to the start again. There are two important points to notehere, �rstly that data is not handled explicitly in AORTA (although there are extensions which do [6]), socomputation is represented only by the amount of time it takes, and secondly that computation delays canbe represented as bounds on execution times rather than exact �gures. The use of bounds for computa-tion delays (as well as for communication delays and time-outs) make it much easier to provide veri�ableimplementation techniques. Implementation, however, will be considered in more detail in section 6.Behaviour branching which is dependent on communication is represented by the + operator. Two ormore communications are o�ered at once, and the subsequent behaviour depends on which is taken up�rst. This operator can be used to implement a channel which accepts and delivers two kinds of messages:Channel = in1.out1.Channel+in2.out2.ChannelHere once another process sends a message via in1, the channel is not available until the message isreceived at the far end (gate out1). As well as using choice, communication can be extended with time-out, which allows another behaviour branch to be followed if no communication occurs within a certaintime. This could be used to force a limit on how long the channel would wait for a message to be accepted:Channel = in1.(out1.Channel)[5.0,5.1>Channel+in2.(out2.Channel)[5.0,5.1>ChannelNotice the use of brackets to indicate which communication the time-out is to a�ect, and the use of timebounds for specifying the time-out value.There are other forms of branching behaviour which do not depend on communication, such as datadependent branching and faulty behaviour. These are both represented by the non-deterministic choiceoperator ++ in AORTA, which we shall describe in a little more detail in section 4. Table 1 summarisesthe syntax of sequential process syntax.Having de�ned the processes that make up a system, they must be placed in parallel and have theirgates connected for either internal or external communication. Communication delays (again, expressedwith bounds) are also given at the system level, to represent the amount of time taken for the system to2



communication a.Scommunication choice a1.S1 + ... + an.Snbounded delay [t1,t2]Sbounded time-out (a1.S1 + ... + an.Sn)[t1,t2>Snon-deterministic choice S1 ++ ... ++ Snrecursion equational de�nitionTable 1: Summary of AORTA sequential process syntaxnotice and e�ect any communication. All of this information is given in the connection set, which listspairs of gates for internal connection (each gate may only be connected once) and externally connectedgates, and the corresponding delay bounds. These connection sets can be realised graphically, andtogether with the processes correspond to Milner's ow graphs [16]. An example of a connection set isgiven in the next section, where we describe the alternating bit protocol in AORTA.3 Alternating Bit Protocol in AORTAThe alternating bit protocol is a widely discussed example, probably because it is one of the simplestexamples of a protocol which can do something `useful' | it guarantees integrity of communicationin a situation where messages may be duplicated or lost. Our description is based on Milner's CCSdescription in [16]. We are concerned with constructing Send and Reply processes which can be connectedby possibly noisy channels Trans and Ack. The way the alternating bit protocol works is that messagesand acknowledgements are tagged with a bit (0 or 1), with successive messages and acknowledgementsbeing tagged with alternating bits. Having sent a 0-tagged message, the sender waits for a 0-taggedacknowledgement; if one does not arrive within a certain amount of time, the message is sent again. Oncean acknowledgement does arrive, the next message can be sent, this time tagged with a 1. The replier,meanwhile, waits for a 0-tagged message, delivers the data, and sends a 0-tagged acknowledgement. Ifit receives another 0-tagged message it simply sends another 0-tagged acknowledgement, but a 1-taggedmessage causes it to deliver the message and return a 1-tagged acknowledgement and so on. The layoutof the system is shown in �gure 1.The Reply process is the simpler of the two, and is de�ned in AORTA as followsReply = trans0.Deliver0Deliver0 = deliver.Reply0Reply0 = reply0.(trans1.Deliver1+trans0.Reply0)Deliver1 = deliver.Reply1Reply1 = reply1.(trans0.Deliver0+trans1.Reply1)A time-out is added to the Send process to resend messages if acknowledgements are not sent within acertain amount of time.Send = accept.Send0Send0 = send0.Sending0Sending0 = (ack0.Accept1 + ack1.Sending0)[100.0,101.0>Send0Accept1 = accept.Send1Send1 = send1.Sending1Sending1 = (ack1.Accept0 + ack0.Sending1)[100.0,101.0>Send1Accept0 = accept.Send0The channel processes Trans and Ack can also be modelled in AORTA. A simple model of these3
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the AORTA simulator to indicate which internal and external communications are available. In the nextsection we discuss the use of the simulator, and its relation to the formal semantics of AORTA.4 Simulation and ValidationAORTA has a formal semantics, given in terms of a timed transition system de�ned by operationalrules [4]. If an AORTA expression S1 becomes S2 after t units of time, this is writtenS1 (t)�!S2and if a communication a takes place, this is writtenS1 a�!S2where a can be a gate name (for external communication) or the distinguished action � (for internalcommunication). This behaviour can be observed by using the AORTA simulator, which takes an AORTAdescription of a system (such as the one described in section 3) and allows the behaviour to be steppedthrough using a simple menu-driven system. This much is similar to other simulators, such as can befound in the concurrency workbench [10] or other tools, but there is also a facility for showing graphicallywhich communications are available. Figure 2 shows a screen shot of the simulator with an internal actionavailable | the corresponding connection is shown as a dashed line.After each transition (time or action), a menu of possible further transitions is o�ered, with anypossible action transitions displayed on the system layout diagram. If an action transition is chosen thenthe corresponding connection is ashed on the diagram. If a time transition is chosen then a furtherprompt asks for a time value, or one of the commands NEXTCRUCIAL and NEXTCOMM. The two commandsprogress time up to the next crucial point (the end of a delay or time-out) and the next possible internalcommunication respectively. If a time value is given the system will be aged by that amount, providedit does not go through a possible internal communication. All internal communications must take placeas soon as they become available (the maximum progress principle, enforced in the semantics), and thecommunication delay follows the occurrence of the � action in the semantics.The non-determinism expressed in time bounds and non-deterministic choice, has to be resolvedby the simulator somehow. There is a variety of tactics available, which are prompted for when thesimulator is started up. Resolution of time bounds can be done by always choosing the minimum value,always choosing the maximum value, choosing a random value, or always prompting the user for a value.Resolution of non-deterministic choice is always achieved by prompting the user.Using the simulator, a system can be tested (although still using the formal semantics) before anattempt is made to formally verify it via model-checking (see section 5), or to implement it via codedgeneration (see section 6). This approach can save a lot of time and frustration spent trying to verifyproperties that are not true.The alternating bit protocol system can helpfully be exercised with this simulator. By choosing timebounds to be resolved to the minimum value, the protocol is never required to retransmit data, so thenormal behaviour can be examined. If maximum values for times are chosen the sending process alwayshas to time-out, so that part of the behaviour is exercised. Di�erent assumptions about bu�er behaviourcan be built into the system by altering the Trans and Ack processes and simulating the behaviour ofthe new system. For example, to include the possibility of the transmit bu�er losing one of the messageswe can use non-deterministic choice to represent failure. Non-deterministic choice is written with the++ operator, which chooses between the branches non-deterministically, so we can have one branch asnormal behaviour and another as faulty behaviour. A version of the Trans process which allows for thepossibility of messages being lost, but which has no delays involved except internal communication delays,is given by 5



Figure 2: Screen Dump of the SimulatorTrans = send0.((trans0.Trans) ++ Trans)+send1.((trans1.Trans) ++ Trans)but this process allows arbitrarily many messages to be lost. This is the general case for such a channel,but no bounded response theorems can be proved of a system which may have to repeat a messagearbitrarily many times. To describe a channel which may lose at most one copy of each message, thismust be changed toTrans = send0.((trans0.Trans) ++ (send0.trans0.Trans))+send1.((trans1.Trans) ++ (send1.trans1.Trans))Such use of the ++ operator to represent failures is a powerful tool in modelling assumptions that canbe made about a system, and can be used to evaluate to what extent a system may be perturbed beforelosing functionality. When this second process is used in the system, the simulator asks the user to choosebetween the two cases, corresponding to whether a message is to be transmitted at the �rst attempt,6



or whether a retransimission will be necessary. In either case, the simulator validates that the protocolsuccessfully delivers the message and acknowledges the transmission. The formal veri�cation of this factcan be automatically achieved by model-checking, as described in the next section. The duplication ofmessages can be handled in a very similar way.5 Timed Graphs and Veri�cationApproaches to the automatic veri�cation of �nite-state concurrent systems have been known for morethan a decade [12, 9]. Such techniques are based upon checking that the state graph of a concurrentsystem is a model for the temporal logic formulae which are used to specify desired system properties.Such an approach is of great practical interest because it allows the developer to verify a system withoutconstructing a proof and because, when the veri�cation fails, it is possible to provide automatically atrace of the unsatisfactory behaviour; this can be very useful in debugging. Recent work has shown howsystems with a large number of states can be checked by using a symbolic representation of the stategraph [8, 15] and how this approach can be adapted to the veri�cation of real-time systems [2, 13].5.1 Timed GraphsTimed graphs [1] have been shown to be appropriate models for real-time systems and have been adoptedin the construction of model-checking tools [18, 23] Our present approach to veri�cation depends upontranslating AORTA expressions to timed graphs in order to make use of such tools. In this section, wedescribe in detail the basis of this translation which follows closely that of [18] but di�ers in a number ofinteresting respects. The syntactic restrictions on AORTA allow a simpler translation and lead to graphswhich inevitably possess a number of desirable properties including bounded variability (only a boundednumber of transitions are possible in a �nite time) and non-zenoness (time is always able to progresseventually). A translator has been implemented in Standard ML and incorporated into the AORTA toolset. We adapt the variant of timed graphs described in [18] and present the relevant de�nitions here forcompleteness.A timed graph is an automaton which is extended with a �nite set of clocks where a clock is a real-valued variable which records elapsed time. Clocks advance uniformly with time or can be reset to zero.We assume throughout that the time domain is the non-negative reals although our results hold for otherdomains such as the natural or rational numbers.For a �nite set of clocks C and rationals Q, the set of clock formulae F(C) isF(C) = fc � rjc 2 C; r 2 QgA clock valuation v 2 RC is a function which assigns to each clock c 2 C a value v(c) 2 R. We writev + t for the valuation v0 such that v0(c) = v(c) + t for all c 2 C, and for C 0 � C we write v[C 0 := 0]for the valuation v0 such that v0(c) = 0 for c 2 C 0 and v0(c) = v(c) otherwise. The evaluation of clockformula f given clock valuation v is written f(v) and we say v satis�es a clock formula c � r if v(c) � r.De�nition 5.1 A timed graph is a tuple, (N;n0; C;E; tcp), where� N is a �nite set of nodes� n0 is the initial node� C is a �nite set of clocks� E � N � Label � F(C) � 2C � N is a �nite set of edges representing transitions. Each transition(n; l; f; C0; n0) 2 E consists of a source location n and a target location n0 2 N , a label l, a clockformula f and a set of clocks C0 � C. 7



� tcp : N ! RC ! R! Bool is a predicate which determines for each location n, clock valuation vand time value t whether the system can remain at location n while time is allowed to progress byan amount t.A timed graph gives rise to a labelled timed transition system, (S; s0;�!) where� S = N �RC is the set of states� s0 = (n0; v[C := 0]) is the initial state, and� the transition relation �! is given by the rulesAction (n; a; f; C0; n0) 2 E ^ f(v)(n; v) a�!(n0; v[C0 := 0]) Time tcp(n)(v)(t)(n; v) (t)�!(n; v + t)5.2 Translation MethodWe �rst give an abstract syntax for AORTA expressions. For a �nite indexing set I, i; j 2 I, a �nite setof gate names Act, ai 2 Act, and a set of process names Proc, X 2 Proc, the set of sequential expressionsSeq with S; Si 2 Seq, is given by S ::=Xi2I ai:SijS1 >t2t1S2jMi2I SijXwhich correspond to summation, time-out, non-deterministic choice and recursion, respectively. As usual,we write a sum over an empty indexing set as 0, the process which can not perform any action. Com-putation delay and deterministic versions of the timed operators then have natural abbreviations asfollows:[t1; t2]S def= 0>t2t1S Non-deterministic computation delay[t]S def= 0>tS Deterministic computation delayS1 >tS2 def= S1 >ttS2 Deterministic time-outAlthough computation delays have equivalent formulations as time-outs at this level of abstraction, thenotation for them is introduced not simply for convenience but because they require a di�erent treatmentin implementation as will become apparent in section 6.The set of system expressions Sys,  2 Sys, being the parallel composition of a �nite number ofsequential expressions, is given by  ::=Yi2I Si < K >where K is a �nite set of internal connections, each connection being represented by an unordered pair ofgate names; we require that each gate is connected either to exactly one other gate or to its environmentvia a single external connection and assume the latter in the case of any gate name occurring in a systemexpression but not in its associated connection set.We �rst give the translation for sequential process expressions. The translation depends on the factthat every sequential process can be implemented using a single clock (we write cs for the clock associatedwith process S and abbreviate the singleton fcsg to cs when the context is clear). The clock associatedwith a sequential process is reset on every transition and so simply records the time since the processlast made a transition. For a sequential process S and its associated clock cs, we de�ne a compositionaltranslation to a timed graph based on the structure of S.8
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where E = E1 [E2 [ f(n01; �; cs � t1; cs; n02)gand tcp(ni) = tcpi(ni) for all locations ni 2 Ni except that tcp(n01)(v)(t) is tcp1(n01)(v)(t)^v(cs)+t � t2.The case of non-deterministic time-out presented here subsumes deterministic time-out and compu-tation delay in an obvious way.Non-deterministic choice For i 2 I let G[[Si]] = (Ni; n0i ; cs; Ei; tcpi). ThenG[[Mi2I Si]] = (N [ fn0g; n0; cs; E; tcp)where N = Si2I Ni; n0 =2 N , E = [i2IEi [ f(n0; �; true; cs; n0i )ji 2 Igand tcp(ni) = tcpi(ni) for all locations ni 2 Ni and tcp(n0)(v)(t) = false for any clock valuation vand time value t. In other words the choice must be resolved before time can progress.Recursion The syntactic restrictions on the use of recursion allow its translation to proceed in a verystraightforward manner. When a process name X is encountered in the translation of a sequentialexpression, its translation is simply the graph associated with X; such an association will exist if X hasbeen encountered before but not otherwise. In the latter case, we associate G[[0]] with X and add X toa list of names whose graphs are yet to be constructed. Following the �rst pass of our translation, weconstruct the graph for each name in this list, by translating the right-hand side of the de�ning equationfor the name. The initial node of each graph constructed in this way is identi�ed with the initial node ofthe graph previously associated with the name. We continue in this way until we have constructed thegraphs for all names encountered.Parallel composition In giving the translation for parallel composition we adopt the the following no-tational abbreviations:~N for N1 � N2 � : : :�NjIj~n for (n1; n2; : : : ; njIj)~nij for (n1; n2; : : :ni; : : :nj; : : :njIj)~ni0j0 for (n1; n2; : : :n0i; : : :n0j; : : :njIj)where we assume some indexing set I, fi; jg � I; i 6= j.The translation for an AORTA system expression is given byG[[Yi2I Si < K >]] = ( ~N; ~n0; fcSiji 2 Ig; E; tcp)The set of transitions is E = IC [EC [ TO, whereIC = f(~nij; �; true; fcSi ; cSjg; ~ni0j0)j(ni; a; true; cSi ; n0i) 2 Ei; (nj; b; true; cSj ; n0j) 2 Ej; (a; b) 2 Kg (1)EC = f(~ni; a; true; fcSig; ~ni0)j(ni; a; true; cSi ; n0i) 2 Ei; (a; ) =2 K; (~ni; ; ; ; ) =2 ICg (2)TO = f(~ni; �; �; fcSig; ~ni0)j(ni; a; �; cSi; n0i) 2 Eig (3)For any location ~n 2 ~N , clock valuation v and time value t, tcp(~n)(v)(t) is Vi2I tcpi(ni)(v)(t) exceptthat for any location ~n such that (~n; ; ; ; ) 2 IC we require that tcp(~n)(v)(t) is false; in other words,10
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Figure 4: The timed graph of the Send processtime can progress only when all processes allow it but even then, not at any location which has thecapacity for internal communication, so enforcing the maximal progress principle.The sets (1) { (3) give the transitions for internal communication, external communication and time-outs / nondeterministic choice, respectively. Notice that an external communication is allowed onlyin a state where no internal communication is possible. This simple priority mechanism ensures thedesirable implementation property that a component cannot become swamped by communication withits environment.The labelled transition system induced by the timed graph constructed for an AORTA expression isequivalent to that given directly by the AORTA semantics [4]. We omit the proof and the semantics forreasons of space.We observe that the graphs constructed by this approach have a rather simple structure in that theonly edges which are constrained by a clock condition are those arising from time-outs and computationdelays and then only by a simple constraint on a single clock. We intend to explore whether this simplicityof structure can be exploited in the construction of a more e�cient model checker.11



5.3 Using KRONOS to verify timing requirementsKRONOS [18, 23, 19] is a symbolic model checker which implements the approach described by Henzingeret al. [13]. It allows timed graphs to be checked for properties expressed in the real-time logic TCTL [1].For a �nite set of atomic propositions P , the formulae of TCTL are de�ned as follows:� ::= pj:�j�1 _ �2j�19U#n�2j�18U#n�2where p 2 P , n is a natural number and # is one of the relational operators <, �, =, �, or >.TCTL formulae are interpreted over the sequences of states generated by the transition system ofa timed graph. The details can be found in [13]. Intuitively, �19U#n�2 means that there exists asequence with a �nite pre�x such that �2 is satis�ed by the last state at time t where t#n and �1is satis�ed continuously until then. �18U#n�2 means that for every sequence this property holds. Anumber of abbreviations are commonly used: 83#n� for true8U#n�, 93#n� for true9U#n�, 92#n�for :83#n:�, and 82#n� for :93#n:�.TCTL is expressive enough to allow us to express most system properties of interest. For example, abounded response property can be easily stated,82(stimulus=)83�5response)which captures the requirement that after any occurrence of a stimulus, a response will always happenwithin 5 time units. Other useful properties such as bounded invariance, bounded inevitability, self-stabilization and so on can be expressed just as easily.For a timed communication protocol the property of most interest is that, under certain assumptions,a message which is accepted for sending will eventually be delivered correctly within a certain time; inother words a bounded response property. In the context of our description of the alternating bit protocol,such a property can be stated asinit=)82(after(accept)=)83�200enable(deliver))Of course it is possible also to state and check properties concerning the correct operation of theprotocol, namely that the sending of a message strictly alternates with the receiving of a message andthat whenever a 0-tagged (respectively, 1-tagged) message is sent a 0-tagged (respectively, 1-tagged)message is received [9].It is of most interest in this case to explore the design of the protocol by checking these propertiesunder varying assumptions about the transmission and acknowledgement channels, in much the sameway as we discussed in section 4 on the use of the simulator. We have used KRONOS to check thebounded response property for the protocol assuming error-free communication and also assuming thatthe transmission channel loses at most one message between successful deliveries. It can be seen easily howthis approach can be extended to check this property under more elaborate assumptions about possiblecommunication faults including lost, garbled or duplicated transmissions and/or acknowledgements.6 Implementation Via Code GenerationHaving validated and veri�ed the AORTA system, there are semi-automatic techniques for implementingthe design. These techniques are discussed in some detail in [3, 5]. In this section we concentrate onthe implementation of the individual processes, and its relationship to the construction of timed graphsfor model-checking described in section 5. Once the individual processes have been constructed they caneither be executed separately (as would be the case for a distributed implementation of the alternatingbit protocol), or multitasked on the same processor. Multitasking complicates the issue of timing, butthis is addressed using a dedicated AORTA kernel [3].12



The construction of code to implement an AORTA process can be done for any imperative languagewhich admits timing analysis. Here we use C for entirely pragmatic reasons, viz. the availability of crosscompilers and timing tools [21, 20]; in e�ect we use C as a portable assembler. Although some work hasbeen done on implementing process algebra systems using synchronous languages, our work uses morestandard techniques, and does not rely on the standard synchronous language assumptions about theimmediate responsiveness of the computer system.Code can be generated for all parts of the program which are related with communication, choice,time-out and recursion, which accounts for all of the Send and Reply processes. The structure of theprocess is built up in exactly the same way as the timed graph for the process, with each state of thetimed graph corresponding to a label within the generated C program. Thus a transition to a statecorresponds to a C goto statement. Communication is handled by a kernel call [3], which takes an arrayof gates to o�ered in choice, and returns a value corresponding to which gate communicates �rst. For asimple communication with no choice, such as is found in the Send process in the equationSend0 = send0.Sending0the generated code looks like this/* process section Send0. Code forsend0.Sending0 */Send0_1:gatenames[0] = GATEsend0;gatenames[1] = 0;switch (communicate(PROCSend,gatenames,gatevalues)){case 1: goto Send0_2;}where the array gatenames contains the names of the gates, terminated with a 0, and the array gatevaluesis used for passing data in and out during communication (not used here for simplicity). The label Send0_2is used to pass control to the process Sending0, via another goto. It would be possible to use a more so-phisticated approach which eliminated the `goto a goto', but this will be done by most compilers anyway,so the resulting object code will have exactly the same structure as the corresponding timed graph.A more complicated communication, which o�ers a choice and has a time-out can be found in thede�nition/* process section Sending0. Code for(ack0.Accept1 + ack1.Sending0)[100.0,101.0>Send0 */Sending0_1:gatenames[0] = GATEack0;gatenames[1] = GATEack1;gatenames[2] = 0;switch (communicatet(PROCSend,100000,gatenames,gatevalues)){case 0: goto Sending0_4;case 1: goto Sending0_2;case 2: goto Sending0_3;}Here there are two gates in the gatenames array, and the kernel call has an extra argument whichspeci�es the minimum real-time clock increment required to activate the time-out. This time the value13



0 is returned if the time-out takes place, and the values 1 and 2 correspond to communications on thegates ack0 and ack1 respectively.In the Send process there are no computation delays or non-deterministic choices, but these areimplemented by annotating the design with the relevant piece of hand-written C code or branch condition,so that they are inserted into the code at the correct point (corresponding to the relevant node or edgeof the timed graph).Using these small pieces of code, connected by gotos, the whole process is built up, forming a graphwhich corresponds to that described in section 5 in topology at least. The labels on the graph nodesand edges de�ne the timing behaviour of the system. This timing behaviour is guaranteed by the timinganalysis of the kernel, combined with code timing of any pieces of computation [3]. Having formed agraph topologically equivalent to the timed graph, and with the timing constraints on nodes and edgesguaranteed by the kernel, we can have con�dence that any properties of the system proved by model-checking will hold of the implemented system. The implementation of communication is handled entirelyby the kernel. Internal connections are managed by checking through a list of pairs of connected gates,and external communication is achieved by supplying an I/O function in a standard form, which is calledif the corresponding gate is waiting for communication. Because these I/O functions are in a standardform they are very easily replaced, so help to make small-scale prototyping very easy.If only some of the processes are to be implemented in this way, then model-checking can only proveproperties based on assumptions about the way other processes will behave. In the case of the alternatingbit protocol, this means that we have to make assumptions about the way the Ack and Trans bu�ers willbehave. If they behave in the way they are modelled (losing at most one copy of any single message, forexample) then veri�ed propertied of the whole system will hold.7 ConclusionWe have described AORTA, an implementable real-time algebra, and shown how it can be used to modelthe alternating bit protocol which, although simple, captures many important features of communicationprotocols. We have also shown how AORTA systems can be validated via simulation, and formallyveri�ed through model-checking. Finally, implementation techniques for AORTA systems have beenpartly described, and a relationship established with the timed graph model used in the formal veri�cation.AORTA has been used to describe more complex systems, such as a car cruise controller [4] and asubmersible control and logging system [7], which has been implemented using the techniques outlinedhere. Although translation of process algebras to timed graphs is not new [18], and timed graphs have beenused for model-checking of timed protocols [11], the novelty of our work is in providing a tool-supportedframework in which timed systems can be designed, tested, veri�ed and veri�ably implemented.Current and future work on AORTA includes the development of more e�cient model-checking al-gorithms, the use of more advanced scheduling algorithms for implementation, and further investigationinto the distributed and parallel implementation of systems.AcknowledgementsThe authors would like to thank the University of Northumbria at Newcastle and Northern IT Researchfor their �nancial support.References[1] R Alur, C Courcoubetis, and D Dill. Model-checking for real-time systems. In IEEE Fifth Annual14
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