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Abstract

Many attempts have been made to define timed process algebras as
a route to formal reasoning about real-time systems. In this paper we
argue that existing timed process algebras unsuccessfully try to address
all of the aspects which their untimed counterparts do — specification,
design and modelling — where they would be more useful if they were
restricted to one of these roles. Drawing on this, an Application Oriented
Real-Time Algebra (AORTA) is introduced, which has special features
making it suitable for the design of real-time systems which may need to
be formally verified.
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1 Introduction

Process algebras such as CCS [1], CSP [2] and LOTOS [3] have proved them-
selves to be useful tools in the formal specification and verification of concur-
rent communicating systems. One of the reasons for their success is their broad
spectrum of uses, from specification of system behaviour to high-level system
modelling to parallel programming; the availability of automated proof tech-
niques for relating different levels of abstraction or checking properties adds to
their attraction [4].

Although very successful within their domain, such process algebras are lim-
ited in the aspects of a system which they can model or specify, and in particular
they cannot represent the actual time between events, only the ordering in time
of these events. Trying to build on their success, and to provide the basis for
a formal method for real-time systems, many timed process algebras have been
developed, including extensions to existing algebras [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16] — for reviews see [17, 18]. In section 2 we argue that, while useful,
timed process algebras cannot as easily be used as broad-spectrum languages (in
the way that CCS and Z [19] can be), and that a different approach needs to be
taken. The focus of the rest of the paper i1s then made clear in section 3, where
an Application Oriented Real-Time Algebra (AORTA) is introduced. Examples
of using AORTA are given in section 4 and the language and semantics are
formalised in section 5. In section 6, some ideas are given as to how an AORTA
design can be implemented, and finally, section 7 presents some conclusions,
and outlines directions for further work.

*The authors are with the Department of Computing, University of Northumbria at New-
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2 The Problems of Including Time

There are many technical problems to overcome in the definition of a timed
process algebra, but before considering any of these, it is worth looking at the
motivation for a timed algebra, and the extent to which standard (untimed)
process algebra techniques can be extended to timed situations. Each of the ap-
plications for untimed process algebras mentioned above — specification, mod-
elling and design — are still of interest in a timed scenario, but we argue that
they cannot all be handled as well by a timed algebra.

The main reason for the difficulty in applying many timed process algebras is
the level of detail of the behaviour which they describe. In untimed algebras only
the ordering of events is considered, and this seems to lie at the level of detail
which is just right for many systems: to use standard examples, it is important
that a coffee machine should not offer a drink before a coin has been inserted; a
communications protocol should not wait for an acknowledgement until after it
has sent a message; a level crossing should not allow cars to cross the track after
it knows a train is approaching. It could be argued that these examples have
become standard because they show off untimed formalisms to good advantage,
but 1t does appear that this level of abstraction is a useful one in many cases.
The level of detail given by many timed process algebras, however, is very much
higher, as not only the order of events but the ezact time at which they occur
or become available is given. Although some notion of time is important in
many reactive systems, nearly all behaviours are better specified or modelled
by time bounds: a nuclear power plant controller must respond to a rise in core
temperature within a certain amount of time, and a set of traffic lights must
leave sufficient time for all cars to get past in one direction before allowing the
other cars to cross. Bounds are not only more useful in specification, but also
in modelling and design, as most systems cannot guarantee exact performance,
due to unpredictability of program execution times, communication delays and
scheduler performance, but most can guarantee maximum and/or minimum
times.

There are two common methods for verifying correctness of systems using
process algebras — bisimulation and model-checking — and these have both
been extended for use with timed process algebras. Although model-checking,
in which properties stated in a timed logic are tested for a timed algebra term,
does seem to extend well, the idea of bisimulation, which is a cornerstone of
untimed process theory, suffers from the level of detail involved in timed pro-
cess algebras. In a bisimulation a relation is made between terms which have
the same behaviour, and in a timed bisimulation related terms must have the
same behaviour in time. It seems that the level of detail given in existing timed
process algebras is such that bisimulation equivalence makes too fine a distinc-
tion between systems, as 1s borne out by the profusion of definitions of timed
bisimulations, but the lack of examples of equivalent systems (this view is sup-
ported in [20]). If we accept that bisimulations are not very applicable to timed
systems, we have two alternative approaches to finding verification methods for
timed process algebras:

1. Use process algebra terms purely for representing designs, and adopt other
languages, such as temporal logics, for high-level specification. Verification
methods such as model-checking can then be used.

2. Develop new methods which still use process algebras at different levels of



abstraction, using a notion of refinement instead of bisimulation.

In this paper we adopt the first approach, using a timed process algebra for
representing designs, and relying on model-checking (or at least hand verification
of timed logic specifications) as our proof method. Having said that, there
is a large literature on timed logics and proof techniques (including model-
checking) [21, 22, 23, 24, 25, 18, 15], so we are going to leave aside this issue
for the moment, and concentrate on the implications of using timed process
algebras solely for representing designs.

If an algebra is to be used as a design language, careful consideration must
be given to how terms in the algebra (i.e. designs) are to be implemented.
In our algebra, AORTA, more restrictions are placed on terms than in other
algebras, precisely because the restrictions make implementation easier. Some
of the most important differences are because of the difficulty of guaranteeing
the time performance of a real-time system: parallel composition may only take
place at the top level in order to fix the number of processes, as time guarantees
then become easier to give (see section 6); time bounds on performance and
communication times can be given rather than precise figures. Implementing
multiway synchronisation and broadcast events is difficult, particularly where
performance figures are needed, so communication may only take place between
pairs of explicitly named gates. The question may be raised as to whether such
a restricted process algebra is still useful. We would argue that it is useful
as an implementable design language (almost a programming language) which
has a formal semantics, and so allows formal verification of the timing aspects
of safety-critical systems from specification to implementation. Although more
detailed justification needs to be given of the reasons for our choices (and more
will be given in this paper), for the moment we move on to the development of
a timed process algebra which is useful as a design language.

3 Introducing AORTA

In keeping with the conclusions of the previous section we now introduce an
application oriented real-time algebra (AORTA), which has certain features
making it more suitable for representing designs of real-time systems (includ-
ing timing information) than for giving specifications. AORTA can almost be
thought of as a programming language with a formal semantics, and although
there are no automatic compilation techniques, there are ways of implementing
AORTA designs. More of this in section 6; for the moment, we concentrate on
the language as a process algebra.

There are several ways of describing a process algebra: an informal descrip-
tion of the constructs of the language is very helpful, and a formal semantics
is at least as important. There are also different ways of giving a formal se-
mantics, the three main types of semantics being operational semantics; de-
notational semantics and algebraic semantics, these three being represented in
the process algebra world by CCS, CSP and ACP respectively. These three
presentation techniques are not mutually exclusive — a lot of work done with
CCS is concerned with equational (algebraic) reasoning, CSP has been given an
operational semantics, and operational transition rules are used in ACP — so
a good conceptual understanding can be as important as a detailed knowledge
of the formalism concerned. In this paper we use operational semantics given
by transition rules, but before that is an informal introduction to AORTA and



some examples.

3.1 Concrete Syntax and Informal Semantics

Of the common untimed algebras, AORTA is most similar to CCS, both in
notation (. for action prefixing and + for choice) and in semantics (only two-
way synchronisation allowed), but even apart from the time considerations there
are some important differences. One of the restrictions placed on the language
to aid implementation is that the number of processes in a system may not vary,
and this restriction is enforced by insisting that all parallel composition should
happen at the top level. This gives rise to two levels of description: one for
the sequential processes within a system, and another for the parallelism and
connectivity of the system. Restricting systems to a fixed number of processes
is not uncommon in real safety-critical systems, and the limitations imposed
are partly justified by the verifiable implementation techniques described in
section 6. Some familiarity with CCS is assumed in the following.

3.1.1 Sequential Processes

The description of sequential processes is where the relation of AORTA to CCS
is shown most strongly. Actions can be offered, which must be matched by
a communicating partner before the process can proceed, and a choice may
be offered between a number of actions. As in CCS, action prefix and choice
(sometimes called summation) are represented by . and + respectively, with 0
for the null process which offers no actions. Recursion can be written using
the same equational format as used in CCS (e.g. & = a.4), but all recursion
must be guarded (i.e. all process names must appear inside an action prefix).
The other constructs do not have analogues in CCS, and are concerned with
including time information into the process description.

There are two constructs which are used to introduce time, and each of these
has a deterministic and nondeterministic form. The first construct is a delay
which causes the process to pause for the amount of time specified, during which
time no actions are offered — time consuming operations like computation are
represented in this way. As precise times are not always known, the delay may be
specified with an upper and lower bound, rather than a precise figure. A process
which delays for precisely ¢ time units before behaving like S is written [t]S,
and if the delay is bounded by times 1 and ¢2 the process is written [t1,t2]8S.
The second construct 1s a timeout extension to summation, so that if none of the
branches of the choice are taken up within the given time, control is transferred
to another branch. Again, depending on how the timeout is implemented a
precise figure for the time at which control is transferred may not be available,
so an interval of possibilities can be given instead. A choice process S which
times out to process 7' if no communication happens within time ¢ is written
S [t> T, and if the time is bounded by t1 and 2 it is written S [t1,t2> T.

Having given the time behaviour of our new constructs it is necessary to
go back to describe the time behaviour of prefix and choice. A simple prefix
forces the process to wait until communication can take place on the named
channel, so the process a.S can wait for any length of time without changing,
provided communication is not possible. Consideration of how a choice should
behave in time leads us to restrict choice to processes which start with an action



prefix a.s

choice S1 + S2

delay [t]s

bounded delay [t1,t2]S

timeout (St + ... + Sn)[t>S
bounded timeout (s1 + ... + Sn)[t1,t2>S
data dependent choice S1 ++ S2
recursion equational definition

Table 1: Summary of concrete syntax for sequential processes

prefix or another choice. If a choice were allowed between processes that began
with a delay, e.g. [3]a.0 + [2]b.0, then either the choice would have to be
resolved at the first instant of time, leading to time nondeterminism (and a
very counter-intuitive system), or both branches of the choice would have to
run concurrently, which goes against the idea of a sequential process. As both
of these are unacceptable, we restrict the language so that choices can only be
made between processes which start with an action prefix or another choice.

One of the reasons for uncertainty in the execution times of programs is
that there is no information available about the data on which the program
is running — we either don’t know what the data is or we choose to ignore
it to avoid complexity. At the moment no attempt is made to model data in
AORTA, so any branch in a sequential process which depends purely on data
(in particular on the outcome of a computation) rather than on communication
(which is handled by the existing choice) appears to be nondeterministic. To
allow for such branches, a data dependent (or nondeterministic) choice can be
offered between two (or more) processes: such a choice is written P++Q, and is
similar to the nondeterministic choice P M @Q of CSP.

In summary, a sequential process may be constructed from action prefixes,
summations (choices over prefixed processes), time delays, timeouts over choices,
nondeterministic choices and guarded recursion. The syntax is summarised in
table 1. Each process has a behaviour in time which says which actions 1t 1s
prepared to engage in, or in other words, at which of its gates 1t is prepared
to engage in communication. Obviously, for communication to take place there
has to be more than one process in the system — the way that a system is con-
structed from its component processes is kept separate from process definition

in AORTA.

3.1.2 Parallel Composition and Communication

Apart from fixing the number of processes in a system in order to provide reliable
timing predictions (see section 6), there are other steps which can be taken to
aid implementability. One area which is crucial to process algebras and real-
time systems is inter-process communication, and this is perhaps where AORTA
1s most different from existing process algebras.

In all of the common process algebras the communication actions of any pro-
cess are visible to any other process unless explicitly hidden or restricted, which
leads to problems on two fronts. From an implementation point of view this
requires some way of broadcasting all available actions to all processes. Even
more problems are encountered in implementing the multiway synchronisation



of CSP and LOTOS, as witnessed by the restriction to two-way communication
in occam [26] and the need for a special protocol in LOTOS [27]. For a simple
system, which is all we can hope to formally verify at the moment, the mech-
anism for providing such communication facilities may be an excessively costly
overhead, both in terms of implementation and verification.

The availability of all actions to all processes can also cause problems in
verification, as checking for all possible communications requires testing of each
pair of processes for communication on each action, leading to an explosion in
the number of checks to be made. This explosion can be contained by restricting
communication to a named set of channels between processes. There is an anal-
ogy here with sequential programming, where the techniques of object-oriented
and functional programming have tried to limit the means of access to each part
of the program data, making reliable and verifiable design easier. As AORTA is
to be used as a kind of parallel programming language which admits verification,
similar restrictions on the availability of program data and communication will
ease verification.

In the light of these problems, AORTA requires explicit connections to be
made for a communication to become possible, and these connections are made
statically in the system definition. Each process has a set of named gates (like
the syntactic sort of CCS), and communication links between processes are made
by explicitly naming pairs of gates to be linked. By using explicit linking the
restriction or hiding operators of other process algebras are not needed, and by
allowing gates with different names to be linked, renaming operators become
unnecessary. The use of explicit connections may appear to restrict the use of
compositional verification techniques, such as are described in [25], which could
cause problems given the complexity of the model-checking problem. However,
as we shall see later, the semantics of AORTA is layered, separating the sequen-
tial process behaviour from the derived system behaviour. At the sequential
process level, all communications, internal and external, are represented in the
same way, allowing abstract reasoning about individual processes and composi-
tional reasoning at the system level.

Two or more processes may be put in parallel using |, so that P|Q|R repre-
sents three processes in parallel, where each of P, Q, and R is a sequential process.
In order to enable communication, a collection of processes may have some pairs
of gates linked, using a connection set written in angle brackets after the pro-
cesses. An element of the connection set is a pair of gates to be connected, but
this can be abbreviated to a single name if both ends of the link have the same
name. In section 4, there are some examples to show the notation in practice,
and then we give a more abstract syntax and a formal semantics for AORTA in
section 5.

4 Examples in AORTA

In this section there are two examples to show how AORTA can be used. One
feature of the concrete syntax just given is that it uses only standard ASCII
characters, and this is emphasised by using typewriter script when using the
concrete syntax. The order of binding (tightest first) for sequential processes
is . [..] + [..> ++ and then recursion, and parallel composition constructs
| <..> bind most loosely of all. As usual, brackets can be used to override this
ordering.



4.1 A Mouse Button

One system which cannot be expressed in an untimed algebra is that of a mouse
which can either be clicked or double-clicked. If the mouse button is clicked twice
within 250ish milliseconds then a double-click event will be offered; otherwise a
press of the button will yield a single click event. This system quite naturally
uses a timeout in its implementation, which 1s reflected in its expression in

AORTA:
Mouse = click?.(click?.double!.Mouse)[0.245,0.255>single! . Mouse

Mouse 18 a recursive process, with recursion defined using an equational format.
The timeout [0.245,0.255> ensures that if a click is not followed by another
within about 250 milliseconds then a single click is offered. If the second click
occurs within 245 milliseconds of the first then it will definitely be accepted as
a double, and it may be accepted as such up to 255 milliseconds after the first.
An implementation would follow quite easily from this, with a process which
waited for a click, and then read a clock, before waiting for either another click
or the current clock value to exceed the old one by 250 milliseconds. Depending
on which happens first a double or single click event will be offered before
returning to wait for another click. As long as the clock was accurate to within
5 milliseconds it would have behaviour modelled by the AORTA expression,
so any reasoning done on that expression would apply to the implementation.
Note that we use gate names with an exclamation or question marked attached,
corresponding to ‘output’ and ‘input’, but that this is purely for the ease of the
reader and is not required.

4.2 A Car Cruise Controller

A standard example of a real-time safety-critical system is a cruise controller
for a car, which was used as an example for comparing different methodologies,
and is outlined in [28]. An extract from the specification (taken from [28]) is

The cruise control function is to take over the task of maintaining a
constant speed when commanded to do so by the driver. The driver
must be able to enter several commands, including: Activate, De-
activate, Start Accelerating, Stop Accelerating, and Resume. The
cruise control function can be operated any time the engine is run-
ning and the transmission is in top gear. When the driver presses
Activate, the system selects the current speed, but only if it is at
least 30 miles per hour, and holds the car at that speed. Deacti-
vate returns control to the driver regardless of any other commands.
Start Accelerating causes the system to accelerate the car at a com-
fortable rate until Stop Accelerating occurs, when the system holds
the car at this new speed. Resume causes the system to return the
car to the speed selected prior to braking or gear shifting.

The driver must be able to increase the speed at any time by de-
pressing the accelerator pedal, or reduce the speed by depressing the
brake pedal. Thus, the driver may go faster than the cruise control
setting simply by pressing the accelerator pedal far enough. When
the pedal is released, the system will regain control. Any time the
brake pedal is depressed, or the transmission shifts out of top gear,



the system must go inactive. Following this, when the brake is re-
leased, the transmission is back in top gear, and Resume is pressed,
the system returns the car to the previously selected speed. How-
ever, 1f a Deactivate has occurred in the intervening time, Resume
does nothing.

It also adds that in the implementation

The system controls the car through an actuator attached to the
throttle. This actuator 1s mechanically in parallel with the accelera-
tor pedal mechanism, such that whichever one is demanding greater
speed controls the throttle . . . For smooth and stable servo opera-
tion the system must update its outputs at least once per second.

An AORTA implementation of such a system can be given by breaking the
system into four processes: the speedometer system, the controller system, the
throttle system and the brake and gear system.

Looking firstly at the speedometer system, we assume that there is a mea-
surement that can be made which will give the speed, but the acceleration is
also needed (for the Accelerate function), and this is calculated and offered by
this process. About every half a second the speed is reread and a new value for
the acceleration calculated, and for the rest of the time there are two channels
on which the speed is available (one for the controller and one for the throttle
mechanism) and one channel with the acceleration. This is written in AORTA
as

Speedol = (speedoutl!.Speedo2 + speedout2!.Speedo2 +
accelout!.Speedo2)[0.4,0.5>Speedo2
Speedo2 = speedin?.[0.2,0.3]Speedol

The delay [0.2,0.3] corresponds to the time taken to calculate the new value
for the acceleration.

The system which monitors the brakes and gears is also quite simple, and
simply checks the state of the gears and brakes, and depending on what it finds
offers a fast! action, indicating that everything is fine or a slow! action, indi-
cating that either the brakes are on or the transmission is not in top gear. The
choice as to which to offer depends on the data which comes from gearstate?
and brakestate? actions, and so is represented by a data dependent choice ++.
As in the speedometer, new readings are taken about every half a second, giving
the definition

Brakengearl = (fast!.Brakengeari1)[0.4,0.5>
gearstate?.brakestate?.(Brakengearl ++ Brakengear2)
Brakengear2 = (slow!.Brakengear2)[0.4,0.5>
gearstate?.brakestate?. (Brakengear2 ++ Brakengeari)

A slightly more complex system is the throttle system, which has to monitor
the speed and ensure that it 1s kept at the speed specified by the controller, and
which sometimes has to enter an accelerating phase, when it must keep control
of the acceleration. Because of the parallel accelerator pedal mechanism, manual
control will be resumed if the accelerator pedal is down further than the cruise



control actuator, and in particular, if the actuator is set to zero the driver has
complete manual control over the throttle. The output of the throttle controller
system 1s the setthrottle! action, which passes a value for the actuator to
be set at. In usual operation, the system monitors the speed (via getspeed?)
and adjusts the throttle about every half a second. It may also allow a new
speed to be set (by setspeed?), the speed to be set to zero (resetspeed?), or
put the system into an accelerating phase (accelon?). During the accelerating
phase the acceleration is monitored and adjusted until told to stop accelerating
(acceloff?), when the current speed is read for use as the new control speed
and control returned to the usual state. If a resetspeed? is encountered, the
system waits for a new value to be passed via setspeed? before returning to
usual operation. All of this is described in AORTA by

Throttlel (setspeed?.Throttlel + accelon?.Throttle2 +
resetspeed?.Throttle3)[0.4,0.5>
getspeed?.setthrottle! .Throttlel
Throttle2 = (acceloff?.getspeed?.Throttlel)[0.4,0.5>
getaccel?.setthrottle!.Throttle2

Throttle3 setthrottle!.setspeed?.Throttlel

The system which has overall control, and which accepts commands from
the driver (or at least from an interface to the driver) has a more complicated
logical structure, but does not have any real computation to do nor any time
dependent behaviour in the form of timeouts. There are four major states of the
controller, corresponding to the controller being inactive, the controller being
active, the controller being in an accelerating state, and the controller waiting
for a Resume after the brake being pressed or the transmission leaving top gear.
Before entering an activated state, the controller has to check that the brakes
are not on and that the transmission is in top, which it does by looking for a
fast? from the brake and gear system — if a slow? is encountered the system
must be reactivated. The speed is checked, and if it is greater than 30 mph
the controller becomes active, otherwise the system must be reactivated. As
this decision 1s based on the data about the speed, it is modelled by a data
dependent choice ++, giving the structure

Contl = activate?.(fast?.checkspeed?.(Contl ++ setspeed!.Cont2) +
slow?.Cont1)

Once activated, the system must allow itself to be deactivated, or suspended
due to a brake/transmission event, or put into the accelerating step. This is
achieved by

Cont2 = (deactivate?.setspeed0!.Contl +
startaccel?.Cont3 + slow?.Cont4)

During acceleration the system can be deactivated, or stopped from accelerating,
or suspended by a brake/transmission event

Cont3 = accelon!.(deactivate?.acceloff!.setspeed0!.Contl +
stopaccel?.acceloff!.Cont2 + slow?.acceloff!.Cont4)

Finally, if a brake/transmission event occurs, the speed must be reset and re-
sumption or deactivation allowed, checking that the brakes and gears are in
order if necessary.



Cont4 = setspeed0l!.(resume?.fast?.setspeed!.Cont2 +
deactivate?.Cont1)

This design 1is certainly not the only one that could be employed, and prob-
ably contains some logical errors (for instance, if a slow event occurs followed
by a resume before the brakes and gears are OK the system may deadlock),
but it does show how AORTA can be used for designing a such a system. This
initial design may be simulated to iron out any obvious problems, and it may be
checked against a formal specification for inconsistencies or errors. The whole
of the design (including communication links) is given by

Contl = activate?.(fast?.checkspeed?.(Contl ++ setspeed!.Cont2) +

slow?.Cont1)

Cont2 = (deactivate?.setspeed0!.Contl +

Cont3

startaccel?.Cont3 + slow?.Conté4)
accelon!.(deactivate?.acceloff!.setspeed0l!.Contl +
stopaccel?.acceloff!.Cont2 + slow?.acceloff!.Cont4)

Cont4 = setspeed0l!.(resume?.fast?.setspeed!.Cont2 +
deactivate?.Cont1)

Speedol

Brakengearl

Brakengear2

Throttlel =

Throttle2 =
Throttle3 =

Cruisesys =

(speedoutl!.Speedo2 + speedout2!.Speedo2 +

accelout!.Speedo2)[0.4,0.5>Speedo2
Speedo2 = speedin?.[0.2,0.3]Speedol

= (fast!

.Brakengear1)[0.4,0.5>

gearstate?.brakestate?.(Brakengearl ++ Brakengear2)

= (slow!

.Brakengear2)[0.4,0.5>

gearstate?.brakestate?. (Brakengear2 ++ Brakengeari)

(setspeed?.Throttlel + accelon?.Throttle2 +
resetspeed?.Throttle3)[0.4,0.5>
getspeed?.setthrottle! .Throttlel
(acceloff?.getspeed?.Throttlel)[0.4,0.5>
getaccel?.setthrottle!.Throttle2
setthrottle!.setspeed?.Throttlel

(Cont1|Speedol|Brakengearl|Throttlel)

<(Cont1

(Cont1.
(Cont1.
(Cont1.
(Cont1.
(Cont1.

(Cont1

.checkspeed?,Speedol.speedout2!),
acceloff!,Throttlel.acceloff?),
accelon!,Throttlel.accelon?),
setspeed0! ,Throttle.restspeed?),
setspeed!,Throttlel.setspeed?),
slow?,Brakengeari.slow!),
.fast?,Brakengearl.fast!),

(Speedol.accelout!,Throttlel.getaccel?),
(Speedol.speedouti! ,Throttlel.getspeed?)>

The parallelism and communication channels of the system are represented
graphically in figure 1. Another small example, of a temperature conversion
process, is described in [29].
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brakestate? brakestate?

Brakengear
Qearstate? | geardtate? slow! fast!
activate? activate? sow? fast?
deactivate? |  deactivate?
startaccel? | startaccel? Cont checkspeed?

stopaccel? | stopaccel?

resume? | resume?

setspeed0!  setspeed!  accelon!  acceloff!

speedin?
Speedo

speedout2!

speedout1! accelout!

resetspeed? setspeed? accelon?  acceloff?

jetspeed?
setthrottle! T h rOttl e

getaccel?

Figure 1: Parallelism and Connectivity of Cruisesys
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5 Formalising AORTA

5.1 The Abstract Syntax

The syntax presented here is an abstract syntax, terms of which may be ex-
pressed in the concrete syntax given in section 3.1: the translation between the
two is mostly straightforward, but some of the finer points are dealt with later.

A system is expressed as a product of sequential processes, each of which
has a set of gates; gates of processes can be connected pairwise to allow com-
munication. A system expression is then written

P:H&<K>
iel

where each S; is a sequential process, and K is a set of unordered pairs of gates
to be linked. FEach gate is specified by its process (i.e. an element of I) and
its name, and may be connected to at most one other gate. At this level the
communication delay bounds for each gate must also be specified; for linked pairs
the bounds will be the same and will depend on internal communication delays,
but for unlinked gates (i.e. gates that communicate with the environment) the
delay will depend on what is being accessed and how. The delay bounds are
specified by giving a function delays which takes a gate identifier, and returns
an interval of possible communication delay times. This function i1s defined at
the system level, when the details of how gates of processes are to be connected
1s known.

The structure of sequential expressions is given by the syntax

Su= a8 | S| > ainSib'S | [t t2S | >SS | PSi | X

el i€l i€l i€l

where t, t; and t2 (t; < t2) are time values taken from the time domain (either
the positive reals or the naturals), and X is taken from a set of process names
used for recursion. These constructs correspond to action summation, deter-
ministic delay, deterministic timeout, nondeterministic delay, nondeterministic
timeout, nondeterministic choice and recursive definition respectively.

There is a subset of these sequential expressions, the regular expressions,
which is defined to be the set of expressions which evaluate to true under the
function regular given in figure 2. Informally, regular expressions are those
expressions which do not involve any nondeterminism (via delays, timeouts or
nondeterministic choices) before the first action summation, and which contain
only guarded recursion — the condition on guardedness is that all recursion
should be guarded once reformulated as a fixed point.

The translation of a concrete syntax term into the abstract syntax is fairly
direct, but does raise some interesting points. Although we do not wish to deal
with bisimulations, for reasons already stated, there is an equivalence which
yields some of the less interesting equalities on terms, namely syntactic equality
on abstract syntax terms, modulo arithmetic and set equality. Because choice
and parallel composition are indexed by sets in the abstract syntax, it does not
matter in which order the subterms appear in the concrete syntax. This renders
laws such as the commutativity and associativity of the concrete syntax + and
| immediate, as well as the law P + 0 = P, where 0 has the usual translation
of summation over the empty set.
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regular(Zai.Si) = true

i€l
regular([t]S) = regular(S)
regular(z a;.S; >'S) = regular(S)
i€l
regular([ty,t2]S) = false
regular(z a;.S; DifS) = false
i€l
regular(@ S;) = false
i€l
regular(X) = false

Figure 2: Definition of regqular

5.2 The Formal Semantics

In order to define the semantics of system expressions, the semantics of regu-
lar expressions 1s given first. As usual for an operational semantics, a set of
transition rules is given, from which 1s constructed the least relation to satisfy
all of the rules. This semantics depends heavily on the Poss function, which
describes all of the possible ways in which a non-regular (i.e. nondeterministic
or recursive) expression could be resolved into a regular expression. Rules are
only defined for action summation, timeout and deterministic delays because
all other terms are non-regular; note that all terms on the right hand side of
transition arrows are regular (in particular, all elements of Poss(S) are regular),
so the transition relation is well-defined on regular expressions. There are two
types of transitions, namely action transitions, written — where a is a gate

. .. . () . . . .
name, and time transitions, written —> where ¢ is a value in the time domain.
The rules are given in figure 3, and the auxiliary function Poss is defined in
figure 4.

When an action transition takes place all nondeterminism up to the next
action is resolved, by the use of the Poss function. This is not only conve-
nient from a theoretical standpoint, but does correspond to the situation in a
real system. From a theoretical point of view, it avoids the problem of time
nondeterminism. Practically speaking, the nondeterminism comes from a lack
of knowledge about data in the system, and a lack of predictability as regards
scheduling and communication delays; once a process has communicated, all
of its data is fixed until the next possible communication, and if a scheduling
mechanism such as that outlined in section 6 is used then once the starting
time of a computation or communication is known, 1ts completion time can be
calculated exactly.

Fach system expression is described as a product of (regular) sequential ex-
pressions, and the transitions of a system are derived from the transitions of
each of its component processes as would be expected. The transition rules
for system expressions are given in Fig. 5, but the transition system cannot
be formed as the usual least relation, because of the negative premise of the
rule for delay. Problems with negative premises in transition system specifi-
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Yier aisi&[t/]S}

— i<t
152 — )8

j € 1,5} € Poss(S;)
t' € delays(a;)

>ier @i-Si 1S [t]

s t' € delays(a;)

>ier @i-Si Dtsﬁl >

s Mg 5,02

5,15,

<t
el a;.S; it s

j € 1,5} € Poss(5;)

ier aisi&

s

ey aiSi bl

Figure 3: Transition rules for regular expressions

POSS(Z a;.S;) = {Z a;.S; }
iel icl
Poss([t]S) = {[t]9|S" € Poss(S)}

POSS(Z a;.S; >1S)

i€l

Poss([t1,12]5)
POSS(Z a;.S; DifS)

iel
Poss(@
iel
Poss(

i€l

i€l

Si)

X)

def

(> i85 >15'|S" € Poss(S)}

{[)S"[t € [t1,12], S" € Poss(S)}
D a8 BiS' |t € [t1,12], S € Poss(S)}

{Sili € I,S; € Poss(S;)}

Poss(S) if X = 8

Figure 4: Definition of Poss
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Internal Communication
a b
Sj—5; Ske—"5; (oa, kb) € K
[LicsSi < K> Tl St < K > St=S;ifi#j,k

External Communication
jel
Sl Ga,) ¢ K
’ o . .
HZEISZ<[{>L}HZEISZ/<[{> SZ'—SZle#.] ]
Hie[ Sy < K > -~

Delay
vie 1.5,

Mie, S < K> LT, S < K >

V' <t ]];er Age(Si t') < K > 7TL>

Figure 5: Transition rules for system expressions

cations are discussed in [30], and a technique called stratification is provided
to give a meaning to such transition systems. Applying this to AORTA, all
of the transitions of sequential expressions should be worked out first, then all
internal communications of system expressions, and finally the time transitions
and external communications of system expressions. By applying the transition
rules in three stages we ensure that no transition’s validity depends on its own
negation, as may be the case in a transition system with negative premises; this
layering is equivalent to a three layer stratification. For further details, see [30].

The rule for external communication also has a negative premise attached,
in order to enforce a simple priority on actions: here we insist that internal
communications be preferred to external ones, as the permanent availability of
some environment actions may make choices unfair. A similar technique can be
used to attach a full set of priorities to the actions, both internal and external,
allowing one internal communication to be preferred to another and so on. In
order to give a well defined semantics to this, negative premises can be attached
to all actions other than the highest, stating that the communication may not
take place if any higher priority action is possible. A larger stratification is then
used, with a different stratum attached to each priority level, as well as strata
for sequential processes and time transitions.

As well as a stratification, the rule for delay uses an auxiliary function, Age,
which is defined on regular expressions as in figure 6. This function is really
meant to make the side-condition easier to express, as the Age function takes
a process and a time, and returns the state of the process after having delayed
for the specified time. This is captured in the theorem

Theorem 1 For any regular sequential expressions S and S’ and any time t

S8 e Age(S,1) = S

where = 1s syntactic identity modulo equality on time expressions
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Age(z ai.Si, t/) = Z aZSZ

iel iel
[t —1']S <)
Age([t]S,t) = S ' =t)
Age(S,t' —t) (' >1)
er @SS (<t
Age(z a;.S; >1S) ) = SZ ¢ Et’ = t;
el Age(S,t' —1t) ' >1)

Figure 6: Definition of Age

The intuitive interpretation of the transition system formed by these rules
i1s worth mentioning, as there is often some ambiguity, particularly in untimed
algebras, as to what it all means. The two types of transition, — and 0N
correspond to ability to communicate and ability to age. If S—=S’ then S is
ready to communicate externally on gate a, and if this communication takes
place the process will then become S’. If a system can communicate internally
then it does (maximum progress principle, as enforced by the side condition on
the delay rule), and this is represented by the distinguished action . If more
than one 7 action is possible then a nondeterministic choice 1s made between

®

the available actions. The —% transition describes how a system or process may
age 1n time, and it is a property of the system that any process has only one
way in which to age: in other words, it is time deterministic. The behaviour
of a system is then represented by a a series of transitions, with the behaviour
of the environment affecting which external communication events (L) take
place. As each communication has a minimum (non-zero) delay attached, only
finitely many external events can occur within a finite time, so the system
has finite variability; as the number of processes is fixed, it also has bounded
variability [17]. This formal semantics is also presented in [31], along with a
discussion of the problem of verifying the correctness of AORTA designs.

5.8 The Mouse Button Revisited

The mouse button process, which was described in section 4.1, is used here to
show how the formal semantics of a process can be derived. Its definition was

Mouse = click?.(click?.double!.Mouse)[0.245,0.255>single! . Mouse

To define a system which uses this mouse, let us use a very simple computer,
which reacts to one or two clicks on the mouse by performing a piece of compu-
tation.

Computer = one?.[0.4,0.5]Computer + two?.[1.2,1.4]Computer

Putting these in a system, we get
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( Mouse | Computer )
<(Mouse.single!,Computer.one?),

(Mouse.double! ,Computer.two?)>
and define the delays function to give the interval [0.001,0.003] for all gates (in-
ternal and external).

Firstly, the sequential transitions within the system can be worked out, using
the rules of figure 3. As both Mouse and Computer begin with choice, the time
transitions are very straightforward

)
Mouse——Mouse
c )
omputer——Computer

and the action transitions include

Mousecﬁ?[0.0025](click?.double!.Mouse)[0.249 > single!.Mouse
Computerﬂ[0.00iﬂ[0.41](one7.[0.4,0.5]Computer + two?.[1.2,1.4]Computer)

ComputerM[0.00S][1.38](one7.[0.4,0.5]Computer + two?.[1.2,1.4]Computer)

There are many more possible action transitions of Mouse and Computer, as the
Poss function allows the resolution of nondeterminism to any time value within
the bounds, but they can only be via a ¢lick?, one? or two? action.

The initial system transitions are derived from the initial sequential transi-
tions by the rules of figure 5. As click? does not appear in the connection set,
and 1t 1s the only possible action transition of House, no internal communication
(7 transitions) can take place. Also

Age(Mouse, t) = Mouse
and
Age(Computer,{) = Computer
so we can derive the time transition

(t

( Mouse | Computer )—)>( Mouse | Computer )

as well as the action transition
( Mouse | Computer )CM?
( [0.0025](click?.double!l.Mouse)[0.249 > singlel Mouse | Computer )

If the mouse button is not pressed again, the subsequent time transitions of
the mouse process are

0.0025
[0.0025](click?.doublel Mouse)[0.249 > single!.Mouse( -00%%)

. , (0.249)
(click?.doublel.Mouse)[0.249 > single!.Mouse —

single!.Mouse

For these first 0.2515 seconds, only the click? action is available, which is not
internally connected, so we can derive the system time transition

( [0.0025](click?.double!.Mouse)[0.249 > singlel Mouse | Computer )(OES)

( singlelMouse | Computer )
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At this point an internal communication between single! and one? becomes
available, so no more time transitions can take place until the following transi-
tion has taken place

( single!Mouse | Computer )—

( [0.0018](click?.(click?.double! Mouse)[0.245,0.255 > single!.Mouse) |
[0.0012][0.41](one?.[0.4,0.5]Computer + two?.[1.2,1.4]Computer )

The computer can will now execute for 0.41 seconds after its communication
delay, so that after a time transition of 0.4112 we are back to the starting point
of ( Mouse | Computer )

6 Implementing AORTA Designs

One of the motivations for this work is to provide a route for building verified
real-time systems from specification to implementation. Having put aside timed
process algebras as broad spectrum languages, we have chosen to use timed logic
for specification, and AORTA as a design language; it remains to show how
AORTA designs can be implemented, and how these implementations can be
verified to match their designs. The implementation described in this section is
not meant as the only way to implement AORTA designs, but rather to show
that the kind of performance modelled by AORTA can be achieved by real
systems.

The most challenging part of implementing a timed algebra lies in the timing
aspects, and it is on these aspects that we concentrate. Perhaps the most
important thing to achieve in a real-time system is predictability: if timing
requirements are to be as important as the functional requirements we have
to give them equal status, and no one would be happy with a database which
‘usually’ keeps its integrity, or a structural analyser that works ‘provided you
don’t give it too much data at once’. If enough assumptions cannot safely be
made about an environment to guarantee that a system will function safely,
then that system is not safe to use in such an environment. There are those
who prefer to allow some possibility of failure within a system and justify that
failure is so unlikely as to render the system effectively safe, but for two reasons
we prefer to stick to a more predictable approach:

e Software, at least, does not wear out or fail at random, so there is no
reason why this part of a system should not be predictable.

e The full stochastic analysis of a system is very expensive, and relies on
assumptions about independence of events which cannot be verified. (In
particular, the behaviour of a system in extremal circumstances is of most
interest, and this is when assumptions may be least valid.)

Admittedly, there are elements in a system which are unpredictable, such as
hardware failure or noisy communication, but we prefer to account for these
separately and do most of our analysis on a predictable basis.

Having said all this, we return to our earlier point that precise times can
seldom be predicted for a system, and that bounds are much easier to achieve.
Note that we claim predictability is important, not determinism: a system whose
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performance is bounded is predictable, so we present a scheme for producing
predictable systems in the absence of hardware failures.

There are three areas where an implementation of an AORTA design has time
bounds to achieve: in sequential execution, in communication, and in timeouts.
As far as sequential execution goes, we assume that bounds can be placed on
the processing time required for a piece of sequential code (see [32, 33, 34]), so
if the parallelism within a system is to be implemented solely by distributing
the processing there is no more to do as processing time is the same as elapsed
time; the situation is more interesting when multitasking on a single processor
is to be used, and processing time for a process is different from elapsed time.

The scheduler described here is very predictable, if not the most efficient
under light loads. It should be noted, though, that i1t is under heavy processing
loads that prediction becomes most important, and this scheduler has the pleas-
ing property that the more processing required the more efficient it becomes.
The basis is a very simple round-robin scheduler which switches processes at a
fixed rate, regardless of their state of execution. This makes the performance of
each process independent of the others, (as opposed to the situation in a priority
based scheduler,) except when dependence is explicitly introduced by waiting for
communication, and in a way makes each process look like it is being executed
on a separate processor. In a system with a fixed number of processes (such as
AORTA) the time between schedules for any process is fixed, as is the amount
of time it gets. Figure 7 shows the schedule for two processes: the [ labels refer
to the length per schedule, and d to the time (or distance) between calls, with
the scheduler being process 0. A more sophisticated scheduling mechanism may
be more efficient, but is likely to be much less predictable. The arguments as to
which scheduling policy is ‘best’ are long and not necessarily enlightening here
— for the moment we only want a scheduler that ‘will do’. For discussion of
some of the issues see [35, 36], although their conclusions are not necessarily in
line with ours.

In general, if process ¢ needs ¢ units of processing time to complete a task,
bounds can be put on the amount of real time needed to complete. The minimum
elapsed time is required if measurement starts at exactly the point at which the
process becomes scheduled (as this minimises the amount of time spent waiting).
In this case the amount of time spent waiting is

[£/1(@)] < (d(7) = 1(8))

(where |z] is the largest integer such that [x]| < @), so the total elapsed (real)

time 1s
t+ [t/1(2)] x (d(i) — (7))

In the worst case time 1s measured from the point at which the process has just
become descheduled, in which case there is a whole extra idling cycle, giving an

elapsed time of
t+ ([E/1G)] + 1) x (d(@) = 1(3))

Putting these bounds together with the bounds on processing time for our se-
quential processes we can arrive at bounds on elapsed time for the execution for
a section of code running in a process.

As well as allowing each of the processes enough processing time to complete
their tasks within the time bounds required, there also has to be a way of imple-
menting the communication or synchronisation between processes. Many timed
process algebras enforce the maximum progress principle (7 urgency), where
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Figure 7: Predictable process scheduling

communication between processes happens as soon as both parties are ready, as
this makes the semantics simpler, and ensures that things like timeouts can be
modelled (if communication may stall indefinitely a timer becomes useless). In
AORTA immediate communication is not necessary, as it is virtually impossible
to implement, but a time bound is put on communication by the delay in the
rule for action transitions of sequential processes, shown in figure 3.

This can be implemented relatively easily, especially with explicit connection
of gates. An area of memory shared by all of the processes and the scheduler is
used, with a region for each communication channel (i.e. a linked pair of gates).
Inside each such region there should be a bit for each gate, corresponding to
readiness to communicate. These are usually both set to zero, but when a
process wishes to communicate it sets the relevant bit to one, and waits for it
to return to zero before continuing. The scheduler is the only process with the
power to reset a bit, and each time it is called it runs through all of the channels
and resets to zero any pair of ones. In this way there is an upper bound on the
amount of time before an enabled communication occurs, essentially the length
of the time slice d(0). Note that values can also be passed by simply having
a value store associated with each communication channel, written to by one
of the processes and read by the other on completion of the communication.
Choice does complicate the issue, as some communication possibilities must be
removed when a choice is resolved, and this leads to some nondeterminism in
the amount of time the scheduler takes to complete its communication check;
again this can be bounded, so the system remains predictable. Because the act
of setting a bit can be atomic (in terms of CPU instructions) and all of the
resetting 1s done by the scheduler which cannot be interrupted, no problems
arise from preemption of processes.

Timeouts in AORTA are merely an extension of choice, and can be imple-
mented as such. When a choice with a timeout 1s started the local clock can
be read and the time at which the timeout will expire can be calculated. If
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this time is stored somewhere that the scheduler can see it, then the sched-
uler can compare any timeouts with the current time and adjust the relevant
process control accordingly, as well as removing any redundant choices from an
activated timeout. As before, bounds can be placed on the time at which any
particular timeout will expire, but exact figures cannot necessarily be given.

This general scheme then allows bounds to be placed on sequential execution
times, communication delays and timeout events so that an implementation can
be shown to have the same timing characteristics of an AORTA design. If the
design is also shown to correct with respect to a timed logic specification then
we can can be satisfied that the implementation is also correct with respect to
that specification. For a more detailed timing analysis of this kernel, and a
description of some of the implementation details, see [37].

7 Conclusion

In this paper we have argued for and presented a timed process algebra which
is amenable to formal verification and yet can only represent systems which can
be implemented; some indication as to how these systems might be realised in
practice is also given. AORTA is certainly not the first timed process algebra
(the introduction references many others), or the first attempt to design timing
predictability into a system from the start [38], or the first attempt to provide a
(formally based) middle ground between implementation and specification [39]:
the novelty of this approach lies rather in doing all of these things at once.

Further possible work lies in several directions. From an implementation
point of view, investigation into more advanced scheduling techniques, and dis-
tributed implementations would be useful. Work also needs to be done on
methods for verifying that AORTA designs satisfy timed logic predicates (i.e.
formal specifications), as well as extending (perhaps annotating) AORTA de-
signs to include information about data within the system. This would allow
for functional as well as temporal verification, and the resolution of some of
the nondeterminism in the system. Finally, tool support is crucial, and there
are many areas which would gain from computer assistance. Although some
tools already exist, including a simulator and code generator [37], work needs
to be done on verification of designs, and calculation of time bounds from the
distribution and scheduling characteristics of the system.
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