
An Application Oriented Real-Time AlgebraSteven Bradley William Henderson David KendallAdrian Robson �AbstractMany attempts have been made to de�ne timed process algebras asa route to formal reasoning about real-time systems. In this paper weargue that existing timed process algebras unsuccessfully try to addressall of the aspects which their untimed counterparts do | speci�cation,design and modelling | where they would be more useful if they wererestricted to one of these roles. Drawing on this, an Application OrientedReal-Time Algebra (AORTA) is introduced, which has special featuresmaking it suitable for the design of real-time systems which may need tobe formally veri�ed.Keywords: real-time, formal methods, process algebra1 IntroductionProcess algebras such as CCS [1], CSP [2] and LOTOS [3] have proved them-selves to be useful tools in the formal speci�cation and veri�cation of concur-rent communicating systems. One of the reasons for their success is their broadspectrum of uses, from speci�cation of system behaviour to high-level systemmodelling to parallel programming; the availability of automated proof tech-niques for relating di�erent levels of abstraction or checking properties adds totheir attraction [4].Although very successful within their domain, such process algebras are lim-ited in the aspects of a system which they can model or specify, and in particularthey cannot represent the actual time between events, only the ordering in timeof these events. Trying to build on their success, and to provide the basis fora formal method for real-time systems, many timed process algebras have beendeveloped, including extensions to existing algebras [5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 16] | for reviews see [17, 18]. In section 2 we argue that, while useful,timed process algebras cannot as easily be used as broad-spectrum languages (inthe way that CCS and Z [19] can be), and that a di�erent approach needs to betaken. The focus of the rest of the paper is then made clear in section 3, wherean Application Oriented Real-Time Algebra (AORTA) is introduced. Examplesof using AORTA are given in section 4 and the language and semantics areformalised in section 5. In section 6, some ideas are given as to how an AORTAdesign can be implemented, and �nally, section 7 presents some conclusions,and outlines directions for further work.�The authors are with the Department of Computing, University of Northumbria at New-castle, Ellison Place, Newcastle upon Tyne, NE1 8ST1



2 The Problems of Including TimeThere are many technical problems to overcome in the de�nition of a timedprocess algebra, but before considering any of these, it is worth looking at themotivation for a timed algebra, and the extent to which standard (untimed)process algebra techniques can be extended to timed situations. Each of the ap-plications for untimed process algebras mentioned above | speci�cation, mod-elling and design | are still of interest in a timed scenario, but we argue thatthey cannot all be handled as well by a timed algebra.The main reason for the di�culty in applying many timed process algebras isthe level of detail of the behaviour which they describe. In untimed algebras onlythe ordering of events is considered, and this seems to lie at the level of detailwhich is just right for many systems: to use standard examples, it is importantthat a co�ee machine should not o�er a drink before a coin has been inserted; acommunications protocol should not wait for an acknowledgement until after ithas sent a message; a level crossing should not allow cars to cross the track afterit knows a train is approaching. It could be argued that these examples havebecome standard because they show o� untimed formalisms to good advantage,but it does appear that this level of abstraction is a useful one in many cases.The level of detail given by many timed process algebras, however, is very muchhigher, as not only the order of events but the exact time at which they occuror become available is given. Although some notion of time is important inmany reactive systems, nearly all behaviours are better speci�ed or modelledby time bounds: a nuclear power plant controller must respond to a rise in coretemperature within a certain amount of time, and a set of tra�c lights mustleave su�cient time for all cars to get past in one direction before allowing theother cars to cross. Bounds are not only more useful in speci�cation, but alsoin modelling and design, as most systems cannot guarantee exact performance,due to unpredictability of program execution times, communication delays andscheduler performance, but most can guarantee maximum and/or minimumtimes.There are two common methods for verifying correctness of systems usingprocess algebras | bisimulation and model-checking | and these have bothbeen extended for use with timed process algebras. Although model-checking,in which properties stated in a timed logic are tested for a timed algebra term,does seem to extend well, the idea of bisimulation, which is a cornerstone ofuntimed process theory, su�ers from the level of detail involved in timed pro-cess algebras. In a bisimulation a relation is made between terms which havethe same behaviour, and in a timed bisimulation related terms must have thesame behaviour in time. It seems that the level of detail given in existing timedprocess algebras is such that bisimulation equivalence makes too �ne a distinc-tion between systems, as is borne out by the profusion of de�nitions of timedbisimulations, but the lack of examples of equivalent systems (this view is sup-ported in [20]). If we accept that bisimulations are not very applicable to timedsystems, we have two alternative approaches to �nding veri�cation methods fortimed process algebras:1. Use process algebra terms purely for representing designs, and adopt otherlanguages, such as temporal logics, for high-level speci�cation. Veri�cationmethods such as model-checking can then be used.2. Develop new methods which still use process algebras at di�erent levels of2



abstraction, using a notion of re�nement instead of bisimulation.In this paper we adopt the �rst approach, using a timed process algebra forrepresenting designs, and relying on model-checking (or at least hand veri�cationof timed logic speci�cations) as our proof method. Having said that, thereis a large literature on timed logics and proof techniques (including model-checking) [21, 22, 23, 24, 25, 18, 15], so we are going to leave aside this issuefor the moment, and concentrate on the implications of using timed processalgebras solely for representing designs.If an algebra is to be used as a design language, careful consideration mustbe given to how terms in the algebra (i.e. designs) are to be implemented.In our algebra, AORTA, more restrictions are placed on terms than in otheralgebras, precisely because the restrictions make implementation easier. Someof the most important di�erences are because of the di�culty of guaranteeingthe time performance of a real-time system: parallel composition may only takeplace at the top level in order to �x the number of processes, as time guaranteesthen become easier to give (see section 6); time bounds on performance andcommunication times can be given rather than precise �gures. Implementingmultiway synchronisation and broadcast events is di�cult, particularly whereperformance �gures are needed, so communication may only take place betweenpairs of explicitly named gates. The question may be raised as to whether sucha restricted process algebra is still useful. We would argue that it is usefulas an implementable design language (almost a programming language) whichhas a formal semantics, and so allows formal veri�cation of the timing aspectsof safety-critical systems from speci�cation to implementation. Although moredetailed justi�cation needs to be given of the reasons for our choices (and morewill be given in this paper), for the moment we move on to the development ofa timed process algebra which is useful as a design language.3 Introducing AORTAIn keeping with the conclusions of the previous section we now introduce anapplication oriented real-time algebra (AORTA), which has certain featuresmaking it more suitable for representing designs of real-time systems (includ-ing timing information) than for giving speci�cations. AORTA can almost bethought of as a programming language with a formal semantics, and althoughthere are no automatic compilation techniques, there are ways of implementingAORTA designs. More of this in section 6; for the moment, we concentrate onthe language as a process algebra.There are several ways of describing a process algebra: an informal descrip-tion of the constructs of the language is very helpful, and a formal semanticsis at least as important. There are also di�erent ways of giving a formal se-mantics, the three main types of semantics being operational semantics, de-notational semantics and algebraic semantics, these three being represented inthe process algebra world by CCS, CSP and ACP respectively. These threepresentation techniques are not mutually exclusive | a lot of work done withCCS is concerned with equational (algebraic) reasoning, CSP has been given anoperational semantics, and operational transition rules are used in ACP | soa good conceptual understanding can be as important as a detailed knowledgeof the formalism concerned. In this paper we use operational semantics givenby transition rules, but before that is an informal introduction to AORTA and3



some examples.3.1 Concrete Syntax and Informal SemanticsOf the common untimed algebras, AORTA is most similar to CCS, both innotation (. for action pre�xing and + for choice) and in semantics (only two-way synchronisation allowed), but even apart from the time considerations thereare some important di�erences. One of the restrictions placed on the languageto aid implementation is that the number of processes in a system may not vary,and this restriction is enforced by insisting that all parallel composition shouldhappen at the top level. This gives rise to two levels of description: one forthe sequential processes within a system, and another for the parallelism andconnectivity of the system. Restricting systems to a �xed number of processesis not uncommon in real safety-critical systems, and the limitations imposedare partly justi�ed by the veri�able implementation techniques described insection 6. Some familiarity with CCS is assumed in the following.3.1.1 Sequential ProcessesThe description of sequential processes is where the relation of AORTA to CCSis shown most strongly. Actions can be o�ered, which must be matched bya communicating partner before the process can proceed, and a choice maybe o�ered between a number of actions. As in CCS, action pre�x and choice(sometimes called summation) are represented by . and + respectively, with 0for the null process which o�ers no actions. Recursion can be written usingthe same equational format as used in CCS (e.g. A = a.A), but all recursionmust be guarded (i.e. all process names must appear inside an action pre�x).The other constructs do not have analogues in CCS, and are concerned withincluding time information into the process description.There are two constructs which are used to introduce time, and each of thesehas a deterministic and nondeterministic form. The �rst construct is a delaywhich causes the process to pause for the amount of time speci�ed, during whichtime no actions are o�ered | time consuming operations like computation arerepresented in this way. As precise times are not always known, the delay may bespeci�ed with an upper and lower bound, rather than a precise �gure. A processwhich delays for precisely t time units before behaving like S is written [t]S,and if the delay is bounded by times t1 and t2 the process is written [t1,t2]S.The second construct is a timeout extension to summation, so that if none of thebranches of the choice are taken up within the given time, control is transferredto another branch. Again, depending on how the timeout is implemented aprecise �gure for the time at which control is transferred may not be available,so an interval of possibilities can be given instead. A choice process S whichtimes out to process T if no communication happens within time t is writtenS [t> T, and if the time is bounded by t1 and t2 it is written S [t1,t2> T.Having given the time behaviour of our new constructs it is necessary togo back to describe the time behaviour of pre�x and choice. A simple pre�xforces the process to wait until communication can take place on the namedchannel, so the process a.S can wait for any length of time without changing,provided communication is not possible. Consideration of how a choice shouldbehave in time leads us to restrict choice to processes which start with an action4



pre�x a.Schoice S1 + S2delay [t]Sbounded delay [t1,t2]Stimeout (S1 + ... + Sn)[t>Sbounded timeout (S1 + ... + Sn)[t1,t2>Sdata dependent choice S1 ++ S2recursion equational de�nitionTable 1: Summary of concrete syntax for sequential processespre�x or another choice. If a choice were allowed between processes that beganwith a delay, e.g. [3]a.0 + [2]b.0, then either the choice would have to beresolved at the �rst instant of time, leading to time nondeterminism (and avery counter-intuitive system), or both branches of the choice would have torun concurrently, which goes against the idea of a sequential process. As bothof these are unacceptable, we restrict the language so that choices can only bemade between processes which start with an action pre�x or another choice.One of the reasons for uncertainty in the execution times of programs isthat there is no information available about the data on which the programis running | we either don't know what the data is or we choose to ignoreit to avoid complexity. At the moment no attempt is made to model data inAORTA, so any branch in a sequential process which depends purely on data(in particular on the outcome of a computation) rather than on communication(which is handled by the existing choice) appears to be nondeterministic. Toallow for such branches, a data dependent (or nondeterministic) choice can beo�ered between two (or more) processes: such a choice is written P++Q, and issimilar to the nondeterministic choice P uQ of CSP.In summary, a sequential process may be constructed from action pre�xes,summations (choices over pre�xed processes), time delays, timeouts over choices,nondeterministic choices and guarded recursion. The syntax is summarised intable 1. Each process has a behaviour in time which says which actions it isprepared to engage in, or in other words, at which of its gates it is preparedto engage in communication. Obviously, for communication to take place therehas to be more than one process in the system | the way that a system is con-structed from its component processes is kept separate from process de�nitionin AORTA.3.1.2 Parallel Composition and CommunicationApart from�xing the number of processes in a system in order to provide reliabletiming predictions (see section 6), there are other steps which can be taken toaid implementability. One area which is crucial to process algebras and real-time systems is inter-process communication, and this is perhaps where AORTAis most di�erent from existing process algebras.In all of the common process algebras the communication actions of any pro-cess are visible to any other process unless explicitly hidden or restricted, whichleads to problems on two fronts. From an implementation point of view thisrequires some way of broadcasting all available actions to all processes. Evenmore problems are encountered in implementing the multiway synchronisation5



of CSP and LOTOS, as witnessed by the restriction to two-way communicationin occam [26] and the need for a special protocol in LOTOS [27]. For a simplesystem, which is all we can hope to formally verify at the moment, the mech-anism for providing such communication facilities may be an excessively costlyoverhead, both in terms of implementation and veri�cation.The availability of all actions to all processes can also cause problems inveri�cation, as checking for all possible communications requires testing of eachpair of processes for communication on each action, leading to an explosion inthe number of checks to be made. This explosion can be contained by restrictingcommunication to a named set of channels between processes. There is an anal-ogy here with sequential programming, where the techniques of object-orientedand functional programming have tried to limit the means of access to each partof the program data, making reliable and veri�able design easier. As AORTA isto be used as a kind of parallel programming language which admits veri�cation,similar restrictions on the availability of program data and communication willease veri�cation.In the light of these problems, AORTA requires explicit connections to bemade for a communication to become possible, and these connections are madestatically in the system de�nition. Each process has a set of named gates (likethe syntactic sort of CCS), and communication links between processes are madeby explicitly naming pairs of gates to be linked. By using explicit linking therestriction or hiding operators of other process algebras are not needed, and byallowing gates with di�erent names to be linked, renaming operators becomeunnecessary. The use of explicit connections may appear to restrict the use ofcompositional veri�cation techniques, such as are described in [25], which couldcause problems given the complexity of the model-checking problem. However,as we shall see later, the semantics of AORTA is layered, separating the sequen-tial process behaviour from the derived system behaviour. At the sequentialprocess level, all communications, internal and external, are represented in thesame way, allowing abstract reasoning about individual processes and composi-tional reasoning at the system level.Two or more processes may be put in parallel using |, so that P|Q|R repre-sents three processes in parallel, where each of P, Q, and R is a sequential process.In order to enable communication, a collection of processes may have some pairsof gates linked, using a connection set written in angle brackets after the pro-cesses. An element of the connection set is a pair of gates to be connected, butthis can be abbreviated to a single name if both ends of the link have the samename. In section 4, there are some examples to show the notation in practice,and then we give a more abstract syntax and a formal semantics for AORTA insection 5.4 Examples in AORTAIn this section there are two examples to show how AORTA can be used. Onefeature of the concrete syntax just given is that it uses only standard ASCIIcharacters, and this is emphasised by using typewriter script when using theconcrete syntax. The order of binding (tightest �rst) for sequential processesis . [..] + [..> ++ and then recursion, and parallel composition constructs| <..> bind most loosely of all. As usual, brackets can be used to override thisordering. 6



4.1 A Mouse ButtonOne system which cannot be expressed in an untimed algebra is that of a mousewhich can either be clicked or double-clicked. If the mouse button is clicked twicewithin 250ish milliseconds then a double-click event will be o�ered; otherwise apress of the button will yield a single click event. This system quite naturallyuses a timeout in its implementation, which is re
ected in its expression inAORTA:Mouse = click?.(click?.double!.Mouse)[0.245,0.255>single!.MouseMouse is a recursive process, with recursion de�ned using an equational format.The timeout [0.245,0.255> ensures that if a click is not followed by anotherwithin about 250 milliseconds then a single click is o�ered. If the second clickoccurs within 245 milliseconds of the �rst then it will de�nitely be accepted asa double, and it may be accepted as such up to 255 milliseconds after the �rst.An implementation would follow quite easily from this, with a process whichwaited for a click, and then read a clock, before waiting for either another clickor the current clock value to exceed the old one by 250 milliseconds. Dependingon which happens �rst a double or single click event will be o�ered beforereturning to wait for another click. As long as the clock was accurate to within5 milliseconds it would have behaviour modelled by the AORTA expression,so any reasoning done on that expression would apply to the implementation.Note that we use gate names with an exclamation or question marked attached,corresponding to `output' and `input', but that this is purely for the ease of thereader and is not required.4.2 A Car Cruise ControllerA standard example of a real-time safety-critical system is a cruise controllerfor a car, which was used as an example for comparing di�erent methodologies,and is outlined in [28]. An extract from the speci�cation (taken from [28]) isThe cruise control function is to take over the task of maintaining aconstant speed when commanded to do so by the driver. The drivermust be able to enter several commands, including: Activate, De-activate, Start Accelerating, Stop Accelerating, and Resume. Thecruise control function can be operated any time the engine is run-ning and the transmission is in top gear. When the driver pressesActivate, the system selects the current speed, but only if it is atleast 30 miles per hour, and holds the car at that speed. Deacti-vate returns control to the driver regardless of any other commands.Start Accelerating causes the system to accelerate the car at a com-fortable rate until Stop Accelerating occurs, when the system holdsthe car at this new speed. Resume causes the system to return thecar to the speed selected prior to braking or gear shifting.The driver must be able to increase the speed at any time by de-pressing the accelerator pedal, or reduce the speed by depressing thebrake pedal. Thus, the driver may go faster than the cruise controlsetting simply by pressing the accelerator pedal far enough. Whenthe pedal is released, the system will regain control. Any time thebrake pedal is depressed, or the transmission shifts out of top gear,7



the system must go inactive. Following this, when the brake is re-leased, the transmission is back in top gear, and Resume is pressed,the system returns the car to the previously selected speed. How-ever, if a Deactivate has occurred in the intervening time, Resumedoes nothing.It also adds that in the implementationThe system controls the car through an actuator attached to thethrottle. This actuator is mechanically in parallel with the accelera-tor pedal mechanism, such that whichever one is demanding greaterspeed controls the throttle . . . For smooth and stable servo opera-tion the system must update its outputs at least once per second.An AORTA implementation of such a system can be given by breaking thesystem into four processes: the speedometer system, the controller system, thethrottle system and the brake and gear system.Looking �rstly at the speedometer system, we assume that there is a mea-surement that can be made which will give the speed, but the acceleration isalso needed (for the Accelerate function), and this is calculated and o�ered bythis process. About every half a second the speed is reread and a new value forthe acceleration calculated, and for the rest of the time there are two channelson which the speed is available (one for the controller and one for the throttlemechanism) and one channel with the acceleration. This is written in AORTAasSpeedo1 = (speedout1!.Speedo2 + speedout2!.Speedo2 +accelout!.Speedo2)[0.4,0.5>Speedo2Speedo2 = speedin?.[0.2,0.3]Speedo1The delay [0.2,0.3] corresponds to the time taken to calculate the new valuefor the acceleration.The system which monitors the brakes and gears is also quite simple, andsimply checks the state of the gears and brakes, and depending on what it �ndso�ers a fast! action, indicating that everything is �ne or a slow! action, indi-cating that either the brakes are on or the transmission is not in top gear. Thechoice as to which to o�er depends on the data which comes from gearstate?and brakestate? actions, and so is represented by a data dependent choice ++.As in the speedometer, new readings are taken about every half a second, givingthe de�nitionBrakengear1 = (fast!.Brakengear1)[0.4,0.5>gearstate?.brakestate?.(Brakengear1 ++ Brakengear2)Brakengear2 = (slow!.Brakengear2)[0.4,0.5>gearstate?.brakestate?.(Brakengear2 ++ Brakengear1)A slightly more complex system is the throttle system, which has to monitorthe speed and ensure that it is kept at the speed speci�ed by the controller, andwhich sometimes has to enter an accelerating phase, when it must keep controlof the acceleration. Because of the parallel accelerator pedal mechanism,manualcontrol will be resumed if the accelerator pedal is down further than the cruise8



control actuator, and in particular, if the actuator is set to zero the driver hascomplete manual control over the throttle. The output of the throttle controllersystem is the setthrottle! action, which passes a value for the actuator tobe set at. In usual operation, the system monitors the speed (via getspeed?)and adjusts the throttle about every half a second. It may also allow a newspeed to be set (by setspeed?), the speed to be set to zero (resetspeed?), orput the system into an accelerating phase (accelon?). During the acceleratingphase the acceleration is monitored and adjusted until told to stop accelerating(acceloff?), when the current speed is read for use as the new control speedand control returned to the usual state. If a resetspeed? is encountered, thesystem waits for a new value to be passed via setspeed? before returning tousual operation. All of this is described in AORTA byThrottle1 = (setspeed?.Throttle1 + accelon?.Throttle2 +resetspeed?.Throttle3)[0.4,0.5>getspeed?.setthrottle!.Throttle1Throttle2 = (acceloff?.getspeed?.Throttle1)[0.4,0.5>getaccel?.setthrottle!.Throttle2Throttle3 = setthrottle!.setspeed?.Throttle1The system which has overall control, and which accepts commands fromthe driver (or at least from an interface to the driver) has a more complicatedlogical structure, but does not have any real computation to do nor any timedependent behaviour in the form of timeouts. There are four major states of thecontroller, corresponding to the controller being inactive, the controller beingactive, the controller being in an accelerating state, and the controller waitingfor a Resume after the brake being pressed or the transmission leaving top gear.Before entering an activated state, the controller has to check that the brakesare not on and that the transmission is in top, which it does by looking for afast? from the brake and gear system | if a slow? is encountered the systemmust be reactivated. The speed is checked, and if it is greater than 30 mphthe controller becomes active, otherwise the system must be reactivated. Asthis decision is based on the data about the speed, it is modelled by a datadependent choice ++, giving the structureCont1 = activate?.(fast?.checkspeed?.(Cont1 ++ setspeed!.Cont2) +slow?.Cont1)Once activated, the system must allow itself to be deactivated, or suspendeddue to a brake/transmission event, or put into the accelerating step. This isachieved byCont2 = (deactivate?.setspeed0!.Cont1 +startaccel?.Cont3 + slow?.Cont4)During acceleration the system can be deactivated, or stopped from accelerating,or suspended by a brake/transmission eventCont3 = accelon!.(deactivate?.acceloff!.setspeed0!.Cont1 +stopaccel?.acceloff!.Cont2 + slow?.acceloff!.Cont4)Finally, if a brake/transmission event occurs, the speed must be reset and re-sumption or deactivation allowed, checking that the brakes and gears are inorder if necessary. 9



Cont4 = setspeed0!.(resume?.fast?.setspeed!.Cont2 +deactivate?.Cont1)This design is certainly not the only one that could be employed, and prob-ably contains some logical errors (for instance, if a slow event occurs followedby a resume before the brakes and gears are OK the system may deadlock),but it does show how AORTA can be used for designing a such a system. Thisinitial design may be simulated to iron out any obvious problems, and it may bechecked against a formal speci�cation for inconsistencies or errors. The wholeof the design (including communication links) is given byCont1 = activate?.(fast?.checkspeed?.(Cont1 ++ setspeed!.Cont2) +slow?.Cont1)Cont2 = (deactivate?.setspeed0!.Cont1 +startaccel?.Cont3 + slow?.Cont4)Cont3 = accelon!.(deactivate?.acceloff!.setspeed0!.Cont1 +stopaccel?.acceloff!.Cont2 + slow?.acceloff!.Cont4)Cont4 = setspeed0!.(resume?.fast?.setspeed!.Cont2 +deactivate?.Cont1)Speedo1 = (speedout1!.Speedo2 + speedout2!.Speedo2 +accelout!.Speedo2)[0.4,0.5>Speedo2Speedo2 = speedin?.[0.2,0.3]Speedo1Brakengear1 = (fast!.Brakengear1)[0.4,0.5>gearstate?.brakestate?.(Brakengear1 ++ Brakengear2)Brakengear2 = (slow!.Brakengear2)[0.4,0.5>gearstate?.brakestate?.(Brakengear2 ++ Brakengear1)Throttle1 = (setspeed?.Throttle1 + accelon?.Throttle2 +resetspeed?.Throttle3)[0.4,0.5>getspeed?.setthrottle!.Throttle1Throttle2 = (acceloff?.getspeed?.Throttle1)[0.4,0.5>getaccel?.setthrottle!.Throttle2Throttle3 = setthrottle!.setspeed?.Throttle1Cruisesys = (Cont1|Speedo1|Brakengear1|Throttle1)<(Cont1.checkspeed?,Speedo1.speedout2!),(Cont1.acceloff!,Throttle1.acceloff?),(Cont1.accelon!,Throttle1.accelon?),(Cont1.setspeed0!,Throttle.restspeed?),(Cont1.setspeed!,Throttle1.setspeed?),(Cont1.slow?,Brakengear1.slow!),(Cont1.fast?,Brakengear1.fast!),(Speedo1.accelout!,Throttle1.getaccel?),(Speedo1.speedout1!,Throttle1.getspeed?)>The parallelism and communication channels of the system are representedgraphically in �gure 1. Another small example, of a temperature conversionprocess, is described in [29]. 10
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5 Formalising AORTA5.1 The Abstract SyntaxThe syntax presented here is an abstract syntax, terms of which may be ex-pressed in the concrete syntax given in section 3.1: the translation between thetwo is mostly straightforward, but some of the �ner points are dealt with later.A system is expressed as a product of sequential processes, each of whichhas a set of gates; gates of processes can be connected pairwise to allow com-munication. A system expression is then writtenP =Yi2I Si < K >where each Si is a sequential process, and K is a set of unordered pairs of gatesto be linked. Each gate is speci�ed by its process (i.e. an element of I) andits name, and may be connected to at most one other gate. At this level thecommunicationdelay bounds for each gate must also be speci�ed; for linked pairsthe bounds will be the same and will depend on internal communication delays,but for unlinked gates (i.e. gates that communicate with the environment) thedelay will depend on what is being accessed and how. The delay bounds arespeci�ed by giving a function delays which takes a gate identi�er, and returnsan interval of possible communication delay times. This function is de�ned atthe system level, when the details of how gates of processes are to be connectedis known.The structure of sequential expressions is given by the syntaxS ::=Xi2I ai:Si j [t]S j Xi2I ai:Si >tS j [t1; t2]S j Xi2I ai:Si >t2t1S j Mi2I Si j Xwhere t, t1 and t2 (t1 < t2) are time values taken from the time domain (eitherthe positive reals or the naturals), and X is taken from a set of process namesused for recursion. These constructs correspond to action summation, deter-ministic delay, deterministic timeout, nondeterministic delay, nondeterministictimeout, nondeterministic choice and recursive de�nition respectively.There is a subset of these sequential expressions, the regular expressions,which is de�ned to be the set of expressions which evaluate to true under thefunction regular given in �gure 2. Informally, regular expressions are thoseexpressions which do not involve any nondeterminism (via delays, timeouts ornondeterministic choices) before the �rst action summation, and which containonly guarded recursion | the condition on guardedness is that all recursionshould be guarded once reformulated as a �xed point.The translation of a concrete syntax term into the abstract syntax is fairlydirect, but does raise some interesting points. Although we do not wish to dealwith bisimulations, for reasons already stated, there is an equivalence whichyields some of the less interesting equalities on terms, namely syntactic equalityon abstract syntax terms, modulo arithmetic and set equality. Because choiceand parallel composition are indexed by sets in the abstract syntax, it does notmatter in which order the subterms appear in the concrete syntax. This renderslaws such as the commutativity and associativity of the concrete syntax + and| immediate, as well as the law P + 0 = P, where 0 has the usual translationof summation over the empty set. 12



regular(Xi2I ai:Si) = trueregular([t]S) = regular(S)regular(Xi2I ai:Si >tS) = regular(S)regular([t1; t2]S) = falseregular(Xi2I ai:Si >t2t1S) = falseregular(Mi2I Si) = falseregular(X) = falseFigure 2: De�nition of regular5.2 The Formal SemanticsIn order to de�ne the semantics of system expressions, the semantics of regu-lar expressions is given �rst. As usual for an operational semantics, a set oftransition rules is given, from which is constructed the least relation to satisfyall of the rules. This semantics depends heavily on the Poss function, whichdescribes all of the possible ways in which a non-regular (i.e. nondeterministicor recursive) expression could be resolved into a regular expression. Rules areonly de�ned for action summation, timeout and deterministic delays becauseall other terms are non-regular; note that all terms on the right hand side oftransition arrows are regular (in particular, all elements of Poss(S) are regular),so the transition relation is well-de�ned on regular expressions. There are twotypes of transitions, namely action transitions, written a�! where a is a gatename, and time transitions, written (t)�! where t is a value in the time domain.The rules are given in �gure 3, and the auxiliary function Poss is de�ned in�gure 4.When an action transition takes place all nondeterminism up to the nextaction is resolved, by the use of the Poss function. This is not only conve-nient from a theoretical standpoint, but does correspond to the situation in areal system. From a theoretical point of view, it avoids the problem of timenondeterminism. Practically speaking, the nondeterminism comes from a lackof knowledge about data in the system, and a lack of predictability as regardsscheduling and communication delays; once a process has communicated, allof its data is �xed until the next possible communication, and if a schedulingmechanism such as that outlined in section 6 is used then once the startingtime of a computation or communication is known, its completion time can becalculated exactly.Each system expression is described as a product of (regular) sequential ex-pressions, and the transitions of a system are derived from the transitions ofeach of its component processes as would be expected. The transition rulesfor system expressions are given in Fig. 5, but the transition system cannotbe formed as the usual least relation, because of the negative premise of therule for delay. Problems with negative premises in transition system speci�-13



Pi2I ai:Si aj�![t0]S0j j 2 I; S0j 2 Poss(Sj)t0 2 delays(aj ) Pi2I ai:Si (t)�!Pi2I ai:Si[t]S (t0)�![t� t0]S t0 < t [t]S (t)�!SPi2I ai:Si >tS aj�![t0]S0j j 2 I; S0j 2 Poss(Sj )t0 2 delays(aj )Pi2I ai:Si >tS (t0)�!Pi2I ai:Si >t�t0S t0 < t Pi2I ai:Si >tS (t)�!SS1 (t1)�!S2 S2 (t2)�!S3S1(t1+t2)�! S3Figure 3: Transition rules for regular expressions
Poss(Xi2I ai:Si) = fXi2I ai:SigPoss([t]S) = f[t]S0jS0 2 Poss(S)gPoss(Xi2I ai:Si >tS) = fXi2I ai:Si >tS0jS0 2 Poss(S)gPoss([t1; t2]S) = f[t]S0jt 2 [t1; t2]; S0 2 Poss(S)gPoss(Xi2I ai:Si >t2t1S) = fXi2I ai:Si >tS0jt 2 [t1; t2]; S0 2 Poss(S)gPoss(Mi2I Si) = fS0iji 2 I; S0i 2 Poss(Si)gPoss(X) = Poss(S) if X def= SFigure 4: De�nition of Poss14



Internal CommunicationSj a�!S0j Sk b�!S0kQi2I Si < K > ��!Qi2I S0i < K > (j:a; k:b) 2 KS0i = Si if i 6= j; kExternal CommunicationSj a�!S0jQi2I Si < K > a�!Qi2I S0i < K > j 2 I(j:a; ) 62 KS0i = Si if i 6= jQi2I Si < K > �6�!Delay 8i 2 I:Si (t)�!S0iQi2I Si < K > (t)�!Qi2I S0i < K > 8t0 < t:Qi2I Age(Si; t0) < K > �6�!Figure 5: Transition rules for system expressionscations are discussed in [30], and a technique called strati�cation is providedto give a meaning to such transition systems. Applying this to AORTA, allof the transitions of sequential expressions should be worked out �rst, then allinternal communications of system expressions, and �nally the time transitionsand external communications of system expressions. By applying the transitionrules in three stages we ensure that no transition's validity depends on its ownnegation, as may be the case in a transition system with negative premises; thislayering is equivalent to a three layer strati�cation. For further details, see [30].The rule for external communication also has a negative premise attached,in order to enforce a simple priority on actions: here we insist that internalcommunications be preferred to external ones, as the permanent availability ofsome environment actions may make choices unfair. A similar technique can beused to attach a full set of priorities to the actions, both internal and external,allowing one internal communication to be preferred to another and so on. Inorder to give a well de�ned semantics to this, negative premises can be attachedto all actions other than the highest, stating that the communication may nottake place if any higher priority action is possible. A larger strati�cation is thenused, with a di�erent stratum attached to each priority level, as well as stratafor sequential processes and time transitions.As well as a strati�cation, the rule for delay uses an auxiliary function, Age,which is de�ned on regular expressions as in �gure 6. This function is reallymeant to make the side-condition easier to express, as the Age function takesa process and a time, and returns the state of the process after having delayedfor the speci�ed time. This is captured in the theoremTheorem 1 For any regular sequential expressions S and S0 and any time tS (t)�!S0 () Age(S; t) = S0where = is syntactic identity modulo equality on time expressions15



Age(Xi2I ai:Si; t0) = Xi2I ai:SiAge([t]S; t0) = 8<: [t� t0]S (t0 < t)S (t0 = t)Age(S; t0 � t) (t0 > t)Age(Xi2I ai:Si >tS; t0) = 8<: Pi2I ai:Si >t�t0S (t0 < t)S (t0 = t)Age(S; t0 � t) (t0 > t)Figure 6: De�nition of AgeThe intuitive interpretation of the transition system formed by these rulesis worth mentioning, as there is often some ambiguity, particularly in untimedalgebras, as to what it all means. The two types of transition, a�! and (t)�!correspond to ability to communicate and ability to age. If S a�!S0 then S isready to communicate externally on gate a, and if this communication takesplace the process will then become S0. If a system can communicate internallythen it does (maximum progress principle, as enforced by the side condition onthe delay rule), and this is represented by the distinguished action ��!. If morethan one � action is possible then a nondeterministic choice is made betweenthe available actions. The (t)�! transition describes how a system or process mayage in time, and it is a property of the system that any process has only oneway in which to age: in other words, it is time deterministic. The behaviourof a system is then represented by a a series of transitions, with the behaviourof the environment a�ecting which external communication events ( a�!) takeplace. As each communication has a minimum (non-zero) delay attached, only�nitely many external events can occur within a �nite time, so the systemhas �nite variability; as the number of processes is �xed, it also has boundedvariability [17]. This formal semantics is also presented in [31], along with adiscussion of the problem of verifying the correctness of AORTA designs.5.3 The Mouse Button RevisitedThe mouse button process, which was described in section 4.1, is used here toshow how the formal semantics of a process can be derived. Its de�nition wasMouse = click?.(click?.double!.Mouse)[0.245,0.255>single!.MouseTo de�ne a system which uses this mouse, let us use a very simple computer,which reacts to one or two clicks on the mouse by performing a piece of compu-tation.Computer = one?.[0.4,0.5]Computer + two?.[1.2,1.4]ComputerPutting these in a system, we get 16



( Mouse | Computer )<(Mouse.single!,Computer.one?),(Mouse.double!,Computer.two?)>and de�ne the delays function to give the interval [0:001; 0:003] for all gates (in-ternal and external).Firstly, the sequential transitions within the system can be worked out, usingthe rules of �gure 3. As both Mouse and Computer begin with choice, the timetransitions are very straightforwardMouse (t)�!MouseComputer (t)�!Computerand the action transitions includeMouseclick?�! [0:0025](click?:double!:Mouse)[0:249> single!:MouseComputerone?�![0:0012][0:41](one?:[0:4;0:5]Computer + two?:[1:2;1:4]Computer)Computertwo?�![0:003][1:38](one?:[0:4;0:5]Computer + two?:[1:2;1:4]Computer)There are many more possible action transitions of Mouse and Computer, as thePoss function allows the resolution of nondeterminism to any time value withinthe bounds, but they can only be via a click?, one? or two? action.The initial system transitions are derived from the initial sequential transi-tions by the rules of �gure 5. As click? does not appear in the connection set,and it is the only possible action transition of Mouse, no internal communication(� transitions) can take place. AlsoAge(Mouse; t) = Mouseand Age(Computer; t) = Computerso we can derive the time transition( Mouse j Computer ) (t)�!( Mouse j Computer )as well as the action transition( Mouse j Computer )click?�!( [0:0025](click?:double!:Mouse)[0:249> single!:Mouse j Computer )If the mouse button is not pressed again, the subsequent time transitions ofthe mouse process are[0:0025](click?:double!:Mouse)[0:249> single!:Mouse(0:0025)�!(click?:double!:Mouse)[0:249> single!:Mouse(0:249)�!single!:MouseFor these �rst 0.2515 seconds, only the click? action is available, which is notinternally connected, so we can derive the system time transition( [0:0025](click?:double!:Mouse)[0:249> single!:Mouse j Computer )(0:2515)�!( single!:Mouse j Computer ) 17



At this point an internal communication between single! and one? becomesavailable, so no more time transitions can take place until the following transi-tion has taken place( single!:Mouse j Computer ) ��!( [0:0018](click?:(click?:double!:Mouse)[0:245;0:255> single!:Mouse) j[0:0012][0:41](one?:[0:4; 0:5]Computer + two?:[1:2;1:4]Computer )The computer can will now execute for 0.41 seconds after its communicationdelay, so that after a time transition of 0.4112 we are back to the starting pointof ( Mouse | Computer )6 Implementing AORTA DesignsOne of the motivations for this work is to provide a route for building veri�edreal-time systems from speci�cation to implementation. Having put aside timedprocess algebras as broad spectrum languages, we have chosen to use timed logicfor speci�cation, and AORTA as a design language; it remains to show howAORTA designs can be implemented, and how these implementations can beveri�ed to match their designs. The implementation described in this section isnot meant as the only way to implement AORTA designs, but rather to showthat the kind of performance modelled by AORTA can be achieved by realsystems.The most challenging part of implementing a timed algebra lies in the timingaspects, and it is on these aspects that we concentrate. Perhaps the mostimportant thing to achieve in a real-time system is predictability: if timingrequirements are to be as important as the functional requirements we haveto give them equal status, and no one would be happy with a database which`usually' keeps its integrity, or a structural analyser that works `provided youdon't give it too much data at once'. If enough assumptions cannot safely bemade about an environment to guarantee that a system will function safely,then that system is not safe to use in such an environment. There are thosewho prefer to allow some possibility of failure within a system and justify thatfailure is so unlikely as to render the system e�ectively safe, but for two reasonswe prefer to stick to a more predictable approach:� Software, at least, does not wear out or fail at random, so there is noreason why this part of a system should not be predictable.� The full stochastic analysis of a system is very expensive, and relies onassumptions about independence of events which cannot be veri�ed. (Inparticular, the behaviour of a system in extremal circumstances is of mostinterest, and this is when assumptions may be least valid.)Admittedly, there are elements in a system which are unpredictable, such ashardware failure or noisy communication, but we prefer to account for theseseparately and do most of our analysis on a predictable basis.Having said all this, we return to our earlier point that precise times canseldom be predicted for a system, and that bounds are much easier to achieve.Note that we claimpredictability is important, not determinism: a system whose18



performance is bounded is predictable, so we present a scheme for producingpredictable systems in the absence of hardware failures.There are three areas where an implementationof an AORTA design has timebounds to achieve: in sequential execution, in communication, and in timeouts.As far as sequential execution goes, we assume that bounds can be placed onthe processing time required for a piece of sequential code (see [32, 33, 34]), soif the parallelism within a system is to be implemented solely by distributingthe processing there is no more to do as processing time is the same as elapsedtime; the situation is more interesting when multitasking on a single processoris to be used, and processing time for a process is di�erent from elapsed time.The scheduler described here is very predictable, if not the most e�cientunder light loads. It should be noted, though, that it is under heavy processingloads that prediction becomes most important, and this scheduler has the pleas-ing property that the more processing required the more e�cient it becomes.The basis is a very simple round-robin scheduler which switches processes at a�xed rate, regardless of their state of execution. This makes the performance ofeach process independent of the others, (as opposed to the situation in a prioritybased scheduler,) except when dependence is explicitly introduced by waiting forcommunication, and in a way makes each process look like it is being executedon a separate processor. In a system with a �xed number of processes (such asAORTA) the time between schedules for any process is �xed, as is the amountof time it gets. Figure 7 shows the schedule for two processes: the l labels referto the length per schedule, and d to the time (or distance) between calls, withthe scheduler being process 0. A more sophisticated scheduling mechanism maybe more e�cient, but is likely to be much less predictable. The arguments as towhich scheduling policy is `best' are long and not necessarily enlightening here| for the moment we only want a scheduler that `will do'. For discussion ofsome of the issues see [35, 36], although their conclusions are not necessarily inline with ours.In general, if process i needs t units of processing time to complete a task,bounds can be put on the amount of real time needed to complete. The minimumelapsed time is required if measurement starts at exactly the point at which theprocess becomes scheduled (as this minimises the amount of time spent waiting).In this case the amount of time spent waiting isbt=l(i)c � (d(i)� l(i))(where bxc is the largest integer such that bxc � x), so the total elapsed (real)time is t+ bt=l(i)c � (d(i)� l(i))In the worst case time is measured from the point at which the process has justbecome descheduled, in which case there is a whole extra idling cycle, giving anelapsed time of t+ (bt=l(i)c + 1)� (d(i) � l(i))Putting these bounds together with the bounds on processing time for our se-quential processes we can arrive at bounds on elapsed time for the execution fora section of code running in a process.As well as allowing each of the processes enough processing time to completetheir tasks within the time bounds required, there also has to be a way of imple-menting the communication or synchronisation between processes. Many timedprocess algebras enforce the maximum progress principle (� urgency), where19
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SchedulerProcess 1Process 2Figure 7: Predictable process schedulingcommunication between processes happens as soon as both parties are ready, asthis makes the semantics simpler, and ensures that things like timeouts can bemodelled (if communication may stall inde�nitely a timer becomes useless). InAORTA immediate communication is not necessary, as it is virtually impossibleto implement, but a time bound is put on communication by the delay in therule for action transitions of sequential processes, shown in �gure 3.This can be implemented relatively easily, especially with explicit connectionof gates. An area of memory shared by all of the processes and the scheduler isused, with a region for each communication channel (i.e. a linked pair of gates).Inside each such region there should be a bit for each gate, corresponding toreadiness to communicate. These are usually both set to zero, but when aprocess wishes to communicate it sets the relevant bit to one, and waits for itto return to zero before continuing. The scheduler is the only process with thepower to reset a bit, and each time it is called it runs through all of the channelsand resets to zero any pair of ones. In this way there is an upper bound on theamount of time before an enabled communication occurs, essentially the lengthof the time slice d(0). Note that values can also be passed by simply havinga value store associated with each communication channel, written to by oneof the processes and read by the other on completion of the communication.Choice does complicate the issue, as some communication possibilities must beremoved when a choice is resolved, and this leads to some nondeterminism inthe amount of time the scheduler takes to complete its communication check;again this can be bounded, so the system remains predictable. Because the actof setting a bit can be atomic (in terms of CPU instructions) and all of theresetting is done by the scheduler which cannot be interrupted, no problemsarise from preemption of processes.Timeouts in AORTA are merely an extension of choice, and can be imple-mented as such. When a choice with a timeout is started the local clock canbe read and the time at which the timeout will expire can be calculated. If20



this time is stored somewhere that the scheduler can see it, then the sched-uler can compare any timeouts with the current time and adjust the relevantprocess control accordingly, as well as removing any redundant choices from anactivated timeout. As before, bounds can be placed on the time at which anyparticular timeout will expire, but exact �gures cannot necessarily be given.This general scheme then allows bounds to be placed on sequential executiontimes, communication delays and timeout events so that an implementation canbe shown to have the same timing characteristics of an AORTA design. If thedesign is also shown to correct with respect to a timed logic speci�cation thenwe can can be satis�ed that the implementation is also correct with respect tothat speci�cation. For a more detailed timing analysis of this kernel, and adescription of some of the implementation details, see [37].7 ConclusionIn this paper we have argued for and presented a timed process algebra whichis amenable to formal veri�cation and yet can only represent systems which canbe implemented; some indication as to how these systems might be realised inpractice is also given. AORTA is certainly not the �rst timed process algebra(the introduction references many others), or the �rst attempt to design timingpredictability into a system from the start [38], or the �rst attempt to provide a(formally based) middle ground between implementation and speci�cation [39]:the novelty of this approach lies rather in doing all of these things at once.Further possible work lies in several directions. From an implementationpoint of view, investigation into more advanced scheduling techniques, and dis-tributed implementations would be useful. Work also needs to be done onmethods for verifying that AORTA designs satisfy timed logic predicates (i.e.formal speci�cations), as well as extending (perhaps annotating) AORTA de-signs to include information about data within the system. This would allowfor functional as well as temporal veri�cation, and the resolution of some ofthe nondeterminism in the system. Finally, tool support is crucial, and thereare many areas which would gain from computer assistance. Although sometools already exist, including a simulator and code generator [37], work needsto be done on veri�cation of designs, and calculation of time bounds from thedistribution and scheduling characteristics of the system.AcknowledgementsThe authors would like to thank the University of Northumbria at Newcastle andNorthern IT Research for their �nancial support, and the anonymous refereesfor their comments.References[1] R Milner. Communication and Concurrency. Prentice Hall, New York,1989. 21
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