
Designing and Implementing CorrectReal-Time SystemsSteven Bradley, William Henderson, David Kendall, Adrian RobsonThe authors are with the Department of Computing, University of Northumbria atNewcastle, Ellison Place, Newcastle upon Tyne, NE1 8ST, UKAbstract. Existing formal methods for real-time largely deal with ab-stract models of real-time systems, and seldom address implementationissues; they are mainly used for modelling and speci�cation. In this pa-per we propose an alternative approach, in which a new timed processalgebra, AORTA, is used as a design language, which can be veri�ablyimplemented. As well as introducing and formally de�ning the language,methods for implementation and veri�cation are discussed.1 IntroductionMuch research e�ort is devoted to real-time systems: theoreticians propose mod-els for real-time systems and techniques to verify them, whilst operating systemsdesigners and hardware manufacturers strive to provide yet better performancefrom execution platforms. Links between high-level theory and concrete systemsare scarce and usually tenuous, and yet it is vital for theoreticians to applytheir techniques to concrete systems for their results to be of relevance, and forimplementors to see beyond low-level details to be able to provide performanceguarantees about complete systems. The work we describe here is an attemptto bridge the gap between formal analysis techniques and implementation meth-ods, by providing a design language with a formal semantics which is veri�ablyand semi-automatically implementable. By using our process algebra, AORTA(Application Oriented Real-Time Algebra), as a design language, systems canbe analysed before they are built, and the systems described can be constructedto be correct, rather than shown to be correct by post hoc analysis.There are many timed process algebras other than AORTA, some of whichare reviewed in [27] and [29], including variants of Timed CCS [10, 11, 18, 22,40, 43], Timed CSP [35], Timed LOTOS [5, 6, 23, 25, 34], Timed ACP [2, 13],and others such as ATP [28] and CCSR [14]. In Sect. 2.1 we will argue that thesealgebras are too expressive to be implementable in general. The implementationof untimed process algebras has been considered, for example in [16, 41, 42],but we do not know of any other attempts at direct implementation of a timedprocess algebra. Similarly, so far as we are aware, other timed formalisms, suchas Time Petri Nets [4] and Modecharts [19], TAM [36] and CRSMs [37] havenot been used for implementation. Timed logics appear to be most useful forhigher-level speci�cation rather than realisation, notwithstanding work done onexecutable temporal logics for prototyping [3, 15, 26].



In this paper we introduce our design language, AORTA in Sect. 2, andthen go on to discuss how AORTA designs can be implemented in Sect. 3. Theveri�cation of implementations is addressed in Sect. 4, and Sect. 5 describes howthe work �ts in to an overall design method, and the directions for further work.Finally, Sect. 6 presents our conclusions.2 An Application-Oriented Real-Time Algebra2.1 Why A New Timed Process Algebra?Untimed process algebras can be used as wide-spectrum languages, i.e. theycan be used for speci�cation, design, and to some extent implementation, usingbisimulation as a proof technique to show the equivalence of di�erent levels ofabstraction. Although timed bisimulations can be de�ned, the level of detail ofthe model makes the equivalence relation derived from a timed bisimulation avery �ne one; too �ne, it would appear, to be useful, because although many peo-ple have de�ned timed bisimulation, no realistic examples exist (see also [29]).It has often been suggested that preorders, relating di�erent levels of abstrac-tion within the same basic language, should be used to allow re�nement in thedesign process. Again, some untimed preorders do exist, but we have not comeacross any useful timed preorders which deal with concurrency. As many timedprocess algebras are based heavily on untimed algebras, they have many of thestructures which make untimed algebras suitable as wide-spectrum languages,without providing useful proof techniques to go with them. Rather than try touse a timed process algebra as a wide-spectrum language, we have chosen torestrict the algebra to a design language, and to use other techniques, such asmodel-checking, for verifying correctness between levels of abstraction.Because existing timed process algebras are meant to be used as speci�cationand modelling languages they are required to be expressive, but the expressiv-ity required precludes implementation in general. For example, most of the lan-guages which can handle concurrency allow dynamic process creation via parallelcomposition, and it becomes very di�cult to verify timing in a system where pro-cesses can be created or destroyed. Also, the languages provide a very detailedmodel of the timing of events within a system, the accuracy of which is verydi�cult to provide in implementation | giving delays as exact �gures, ratherthan bounds, makes the construction of systems which have that behaviour im-practical. Most of the novel features of our language arise from implementationconsiderations. Two such features are those just mentioned: the number of pro-cesses in a system is statically de�ned, and computation and communicationtimes can be bounded rather than given exactly (the bounds given in languagessuch as [10, 11, 34] refer to the times at which actions become available andunavailable, and are not able to introduce the nondeterminism associated withcomputation times). The other major feature of AORTA is that communicationbetween processes can only occur along prede�ned routes, to aid implementa-tion and to reduce the complexity of the veri�cation problem. Timed process



algebras can be categorised by the time model that they use, some arguing thata dense time model makes veri�cation too complex, and some that a discretetime model does not accurately describe system behaviour. To try and get thebest of both worlds, AORTA can use a discrete or a dense time domain (but notboth at once).AORTA is described in more detail in the following subsections, by �rstgiving the concrete syntax and informal semantics, then a small example, beforede�ning the abstract syntax and giving the formal semantics in terms of a timedtransition system de�nition.2.2 Concrete Syntax and Informal SemanticsAORTA is similar to CCS, both in notation (. for action pre�xing and + forchoice) and in semantics (only two-way synchronisation allowed), but is bothmore expressive, in that timing details can be included explicitly, and morerestrictive, to allow for implementation. One of the restrictions placed on thelanguage is that the number of processes in a system may not vary, and thisrestriction is enforced by insisting that all parallel composition should appear atthe top level. This gives rise to two levels of description: one for the sequentialprocesses within a system, and another for the parallelism and connectivity ofthe system. Restricting systems to a �xed number of processes is not uncommonin real safety-critical systems, and the limitations imposed are partly justi�edby the veri�able implementation techniques described in section 3. As AORTAis in some ways similar to CCS, some familiarity with CCS is assumed in thefollowing.Sequential Processes. The description of sequential processes is where therelation of AORTA to CCS is shown most strongly. Actions can be o�ered,which must be matched by a communicating partner before the process canproceed, and a choice may be o�ered between a number of actions. As in CCS,action pre�x and choice (sometimes called summation) are represented by . and+ respectively, with 0 for the null process which o�ers no actions. Recursion canbe written using the same equational format as used in CCS (e.g. A = a.A),but all recursion must be guarded (i.e. all process names must appear insidean action pre�x). The other constructs do not have analogues in CCS, and areconcerned with including time information into the process description.There are two constructs which are used to introduce time, and each of thesehas a deterministic and nondeterministic form. The �rst construct is a delaywhich causes the process to pause for the amount of time speci�ed, during whichtime no actions are o�ered | time consuming operations such as computationare represented in this way. As precise times are not always known the delaymay be speci�ed with an upper and lower bound, rather than a precise �gure.A process which delays for precisely t time units before behaving like S is writ-ten [t]S, and if the delay is bounded by times t1 and t2 the process is written[t1,t2]S. The second construct is a timeout extension to summation, so that if



none of the branches of the choice are taken up within the given time, control istransferred to another branch. Again, depending on how the timeout is imple-mented a precise �gure for the time at which control is transferred may not beavailable, so an interval of possibilities can be given instead. A process S whichtimes out to process T if no communication happens within time t is writtenS [t> T, and if the time is bounded by t1 and t2 it is written S [t1,t2> T.Having given the time behaviour of our new constructs it is necessary togo back to describe the time behaviour of pre�x and choice. A simple pre�xforces the process to wait until communication can take place on the namedchannel, so the process a.S can wait for any length of time without changing,provided communication is not possible. Consideration of how a choice shouldbehave in time leads us to restrict choice to processes which start with an actionpre�x or another choice. If a choice were allowed between processes that beganwith a delay, e.g. [3]a.0 + [2]b.0, then either the choice would have to beresolved at the �rst instant of time, leading to time nondeterminism (and avery counter-intuitive system), or both branches of the choice would have torun concurrently, which goes against the idea of a sequential process. As bothof these are unacceptable, we restrict the language so that choices can only bemade between processes which start with an action pre�x or another choice.One of the reasons for uncertainty in the execution times of programs is thatthere is no information available about the run-time data | either we don't knowwhat the data is or we choose to ignore it to avoid complexity. At the moment noattempt is made to model data in AORTA, so any branch in a sequential processwhich depends purely on data (in particular on the outcome of a computation)rather than on communication (which is handled by the existing choice) appearsto be nondeterministic. To allow for such branches, a nondeterministic choicecan be o�ered between two (or more) processes: such a choice is written P++Q,and is similar to the nondeterministic choice P uQ of CSP.In summary, a sequential process may be constructed from action pre�xes,summations (choices over pre�xed processes), time delays, timeouts over choices,nondeterministic choices and guarded recursion. The syntax is summarised inTable 1. Each process has a behaviour in time which says which actions it isprepared to engage in, or in other words, at which of its gates it is prepared toengage in communication. Obviously, for communication to take place there hasto be more than one process in the system| the way that a system is constructedfrom its component processes is kept separate from process de�nition in AORTA.Parallel Composition and Communication. Apart from �xing the numberof processes in a system in order to provide reliable timing predictions (seesection 3), there are other steps which can be taken to aid implementability.One area which is crucial to process algebras and real-time systems is inter-process communication, and this is perhaps where AORTA is most di�erentfrom other process algebras.In all of the common process algebras the communication actions of any pro-



pre�x a.Schoice S1 + S2delay [t]Sbounded delay [t1,t2]Stimeout (S1 + ... + Sn)[t>Sbounded timeout (S1 + ... + Sn)[t1,t2>Snondeterministic choice S1 ++ S2recursion equational de�nitionTable 1. Summary of AORTA concrete syntaxcess are visible to any other process unless explicitly hidden or restricted, whichleads to problems on two fronts. From an implementation point of view thisrequires some way of broadcasting all available actions to all processes. Evenmore problems are encountered in implementing the multiway synchronisationof CSP and LOTOS, as witnessed by the restriction to two-way communicationin occam [21] and the need for a special protocol in LOTOS [38]. For a simplesystem, which is all we can hope to formally verify at the moment, the mech-anism for managing such communication facilities may be an excessively costlyoverhead, both in terms of implementation and veri�cation.The availability of all actions to all processes can also cause problems inveri�cation, as checking for all possible communications requires testing of eachpair of processes for communication on each action, leading to an explosion inthe number of checks to be made. This explosion can be contained by restrictingcommunication to a named set of channels between processes. There is an anal-ogy here with sequential programming, where the techniques of object-orientedand functional programming have tried to limit the means of access to each partof the program data, making reliable and veri�able design easier. As AORTA isto be used as a kind of parallel programming language which admits veri�cation,similar restrictions on the availability of program data and communication willease veri�cation.In the light of these problems, AORTA requires explicit connections to bemade for a communication to become possible, and these connections are madestatically in the system de�nition. Each process has a set of named gates (likethe syntactic sort of CCS), and communication links between processes are madeby explicitly naming pairs of gates to be linked. By using explicit linking therestriction or hiding operators of other process algebras are not needed, and byallowing gates with di�erent names to be linked, renaming operators becomeunnecessary.Two or more processes may be put in parallel using |, so that P|Q|R repre-sents three processes in parallel, where each of P, Q, and R is a sequential process.In order to enable communication, a collection of processes may have pairs ofgates linked, using a connection set written in angle brackets after the processes.The use of AORTA is now illustrated with a small example.



2.3 An Example: A Temperature Conversion ProcessIn order to demonstrate the language constructs in action, this section developsan AORTA description of a temperature conversion process, which may be usedas a component of a plant control system. A �rst attempt at a conversion processsimply takes input on one gate, computes the new format, which takes between0.1 and 0.15 seconds, and then outputs this new data before restarting. It lookslike this:Convert = in.[0.1,0.15]out.ConvertA more sophisticated process might have di�erent conversion modes whichit can use, which are changed by another controlling process. This would berepresented byConvert = in.[0.1,0.15]out.Convert+mode.[0.3,0.4]Convertwhere a piece of recon�guration code, which takes between 0.3 and 0.4 seconds,will execute if communication takes place on the mode gate.In order to ensure that output data is up to date, the process may wish totime out on the out communication, to reread and recompute the output value.A timeout of about 1.5 seconds could be added:Convert = in.[0.1,0.15](out.Convert)[1.45,1.55>Convert+mode.[0.3,0.4]ConvertNote the use of brackets to indicate that the timeout takes place over the outcommunication, rather than in.Finally, the process may wish to check the bounds of its input value, andsend a warning signal to another process if it lies above a certain threshold. Thisis written using a nondeterministic (data-dependent) choice, where the rightbranch should be chosen if there is a problem with the input value.Convert = in.(Convert2 ++ warning.Convert2)+mode.[0.3,0.4]ConvertConvert2 = [0.1,0.15](out.Convert)[1.45,1.55>ConvertA plant control system incorporating the Convert process with a Controlprocess and a Datalogger process is shown in Fig. 1, and maywritten as follows:( Control | Convert | Datalogger )<(Control.changem,Convert.mode),(Control.temphigh,Convert.warning),



Control Convert getdata Datalogger

in

out

changem mode

connections between Control and Datalogger

temphigh warningFig. 1. A Plant Control System(Convert.out,Datalogger.getdata),(* connections between Control and Datalogger *)>Here the Control process may request a change of conversion mode via itschangem gate, and notes any warning signals on its temphigh gate. The outputof Convert is sent to Datalogger, for possible future analysis. A description ofthis system is also given in [8]. Common solutions to real-time problems can beexpressed in AORTA, in particular, resource contention can be handled withchoice, and polling loops can be implemented with timeouts. More involvedexamples have been developed using AORTA, including a car cruise controller.2.4 The Abstract Syntax of AORTAIn the abstract syntax of AORTA, a system is expressed as a product of se-quential processes, each of which has a set of gates; gates of processes can beconnected pairwise to allow communication. A system expression is then writtenP =Yi2I Si < K >where each Si is a sequential process, and K is a set of unordered pairs of gatesto be linked. Each gate is speci�ed by its process (i.e. an element of I) and itsname. At this level the communication delay bounds for each gate must also bespeci�ed; for linked pairs the bounds will be the same and will depend on internalcommunication delays, but for unlinked gates (i.e. gates that communicate withthe environment) the delay will depend on what is being accessed and how.The delay bounds are speci�ed by giving a function delays which takes a gateidenti�er, and returns an interval of possible communication delay times. Thisfunction is de�ned at the system level, when the details of how gates of processesare to be connected is known.The structure of sequential expressions is given by the syntaxS ::=Xi2I ai:Si j [t]S j Xi2I ai:Si >tS j [t1; t2]S j Xi2I ai:Si >t2t1S j Mi2I Si j X



where t, t1 and t2 are time values taken from the time domain (either the pos-itive reals or the naturals), and X is taken from a set of process names usedfor recursion. These constructs correspond to action summation (a combina-tion of action pre�xing and choice), deterministic delay, deterministic timeout,nondeterministic delay, nondeterministic timeout, nondeterministic choice andrecursive de�nition respectively.There is a subset of these sequential expressions, the regular expressions,which is de�ned to be the set of expressions which evaluate to true under thefunction regular given in Fig. 2. Informally, regular expressions are those ex-regular(Xi2I ai:Si) = trueregular([t]S) = regular(S)regular(Xi2I ai:Si >tS) = regular(S)regular([t1 ; t2]S) = falseregular(Xi2I ai:Si >t2t1S) = falseregular(Mi2I Si) = falseregular(X) = falseFig. 2. De�nition of regularpressions which do not involve any nondeterminism (via delays, timeouts ornondeterministic choices) before the �rst action summation, and which containonly guarded recursion | the condition on guardedness is that all recursionshould be guarded once reformulated as a �xed point.The translation of a concrete syntax term into the abstract syntax is fairlydirect, but does raise some interesting points. For reasons already stated, we donot wish to deal with bisimulations, but there is an equivalence which yields someof the less interesting equalities on terms, namely syntactic equality on abstractsyntax terms, modulo arithmetic and set equality. Because choice and parallelcomposition are indexed by sets in the abstract syntax, it does not matter inwhich order the subterms appear in the concrete syntax. This renders laws suchas the commutativity and associativity of the concrete syntax + and | immediate,as well as the law P + 0 = P, where 0 has the usual translation of summationover the empty set.



2.5 The Formal SemanticsIn order to de�ne the semantics of system expressions, the semantics of regularsequential expressions is given �rst. As usual for an operational semantics, a setof transition rules is given, from which is constructed the least relation to satisfyall of the rules. This semantics depends heavily on the Poss function, whichdescribes all of the possible ways in which a non-regular (i.e. nondeterministicor recursive) expression can be resolved into a regular expression. Transitionrules are only de�ned for action summation, timeout and deterministic delaysbecause all other terms are non-regular; note that all terms on the right handside of transition arrows are regular (in particular, all elements of Poss(S) areregular), so the transition relation is well-de�ned on regular expressions. Thereare two types of transitions, namely action transitions, written a�! where a isa gate name, and time transitions, written (t)�! where t is a value in the timedomain. Later on we will use a distinguished action transition ��! to representinternal communication. The rules are given in Fig. 3, and the auxiliary functionPoss is de�ned in Fig. 4.When an action transition takes place, a communication delay is pre�xed tothe process, and all nondeterminism up to the next action is resolved, in accor-dance with the Poss function. This is not only convenient from a theoreticalstandpoint, but does correspond to the situation in a real system. The nondeter-minism comes from a lack of knowledge about data in the system, and a lack ofpredictability as regards scheduling and communication delays; once a processhas communicated, all of its data is �xed until the next possible communication,and if a scheduling mechanism such as that outlined in Sect. 3 is used, then oncethe starting time of a computation or communication is known, its completiontime can be calculated exactly.Each system expression is described as a product of (regular) sequential ex-pressions, and the transitions of a system are derived from the transitions of eachof its component processes as would be expected. The transition rules for systemexpressions are given in Fig. 5, but the transition system cannot be formed as theusual least relation, because of the negative premise of the rule for delay. Prob-lems with negative premises in transition system speci�cations are discussed in[17], and a technique called strati�cation is provided to give a meaning to suchtransition systems. Applying this to AORTA, all of the transitions of sequentialexpressions should be worked out �rst, then all internal communications of sys-tem expressions, and �nally the time transitions and external communicationsof system expressions. By applying the transition rules in three stages we ensurethat no transition's validity depends on its own negation, as may be the case ina transition system with negative premises; this layering is equivalent to a threelayer strati�cation. For further details, see [17].The rule for external communication also has a negative premise attached,in order to enforce a simple priority on actions: here we insist that internalcommunications be preferred to external ones, as the permanent availability ofsome environment actions may make choices unfair. A similar technique can beused to attach a full set of priorities to the actions, both internal and external,



Pi2I ai:Si aj�![t0]S0j j 2 I; S0j 2 Poss(Sj)t0 2 delays(aj) Pi2I ai:Si (t)�!Pi2I ai:Si[t]S (t0)�![t� t0]S t0 < t [t]S (t)�!SPi2I ai:Si >tS aj�!S0j j 2 I; S0j 2 Poss(Sj)Pi2I ai:Si >tS (t0)�!Pi2I ai:Si >t�t0S t0 < t Pi2I ai:Si >tS (t)�!SS1 (t1)�!S2 S2 (t2)�!S3S1(t1+t2)�! S3Fig. 3. Transition rules for regular expressionsPoss(Xi2I ai:Si) = fXi2I ai:SigPoss([t]S) = f[t]S0jS0 2 Poss(S)gPoss(Xi2I ai:Si >tS) = fXi2I ai:Si >tS0jS0 2 Poss(S)gPoss([t1; t2]S) = f[t]S0jt 2 [t1; t2]; S0 2 Poss(S)gPoss(Xi2I ai:Si >t2t1S) = fXi2I ai:Si >tS0jt 2 [t1; t2]; S0 2 Poss(S)gPoss(Mi2I Si) = fS0iji 2 I; S0i 2 Poss(Si)gPoss(X) = Poss(S) if X def= SFig. 4. De�nition of Possallowing one internal communication to be preferred to another and so on. Inorder to give a well de�ned semantics to this, negative premises can be attachedto all actions other than the highest, stating that the communication may nottake place if any higher priority action is possible. A larger strati�cation is thenused, with a di�erent stratum attached to each priority level, as well as stratafor sequential processes and time transitions.As well as a strati�cation, the rule for delay uses an auxiliary function, Age,which is de�ned on regular expressions as in Fig. 6. This function is really meant



Internal CommunicationSj a�!S0j Sk b�!S0kQi2I Si < K > ��!Qi2I S0i < K > (j:a;k:b) 2 KS0i = Si if i 6= j;kExternal CommunicationSj a�!S0jQi2I Si < K > a�!Qi2I S0i < K > j 2 I(j:a; ) 62 KS0i = Si if i 6= jQi2I Si < K > �6�!Delay 8i 2 I:Si (t)�!S0iQi2I Si < K > (t)�!Qi2I S0i < K > 8t0 < t:Qi2I Age(Si; t0) < K > �6�!Fig. 5. Transition rules for system expressionsto make the side-condition easier to express, as the Age function takes a processand a time, and returns the state of the process after having delayed for thespeci�ed time. This is captured in the theoremTheorem 1 For any regular sequential expressions S and S0 and any time tS (t)�!S0 () Age(S; t) = S0where = is syntactic identity modulo equality on time expressionsAge(Xi2I ai:Si; t0) =Xi2I ai:SiAge([t]S; t0) = ( [t� t0]S (t0 < t)S (t0 = t)Age(S; t0 � t) (t0 > t)Age(Xi2I ai:Si >tS; t0) = 8<:Pi2I ai:Si >t�t0S (t0 < t)S (t0 = t)Age(S; t0 � t) (t0 > t)Fig. 6. De�nition of Age



The intuitive interpretation of the transition system formed by these rulesis worth mentioning, as there is often some ambiguity, particularly in untimedalgebras, as to what it all means. The two types of transition, a�! and (t)�!correspond to ability to communicate and ability to age. If S a�!S0 then S isready to communicate externally on gate a, and if this communication takesplace the process will then become S0. If a system can communicate internallythen it does (maximum progress principle, as enforced by the side condition onthe delay rule), and this is represented by the distinguished action ��!. If morethan one � action is possible then a nondeterministic choice is made between theavailable actions. The (t)�! transition describes how a system or process may agein time, and it is a property of the system that any process has only one way inwhich to age: in other words, it is time deterministic. The behaviour of a systemis then represented by a a series of transitions, with the behaviour of the environ-ment a�ecting which external communication events ( a�!) take place. As eachcommunication has a minimum (non-zero) delay attached, only �nitely many ex-ternal events can occur within a �nite time, so the system has �nite variability;as the number of processes is �xed, it also has bounded variability [27].3 Implementation of AORTA designsAs the most important feature of AORTA is its implementability, we describein this section work done on implementing AORTA designs. The aim of thispart of the work is to provide semi-automatic procedures for producing concretesystems from AORTA designs. We have chosen to implement AORTA designsas software processes multitasking on a single processor, as this is probably themost common solution for small embedded systems, but the process abstractioncan model distributed processing, and hardware processes. The software pro-cesses are generated from an annotated AORTA design, compiled and staticallyanalysed. When these processes are executed with a dedicated predictable ker-nel [7], the overall system performance can be analysed, and checked against ahigh-level formal speci�cation.Having �xed on a multitasking solution, the next decisions to be made arewhat kind of scheduling policy should be used, and how to implement messagepassing between processes; these are the two facets that are most important in areal-time kernel. There are very many scheduling policies available (see [9] for areview), many of which use quite sophisticated techniques to extract maximumperformance from the available hardware. For the moment we are content withpredictability of performance, rather than good average performance, so we havechosen to use a �xed time slicing round-robin scheduler, as this guarantees thateach process will get processing time in all circumstances (even if it doesn'tnecessarily need it), eliminating the interdependence of processes except wheremade explicit in a communication request. In adopting this approach we aresacri�cing some e�ciency for a reduction in the e�ort required to predict theperformance of the system. As hardware costs are relatively small compared with



software development and veri�cation costs, we feel this tradeo� is justi�ed inmany cases. If more e�ciency is required, then a more complex scheduling policycould be used, but the e�ort required to predict performance would be higher.Apart from a scheduling mechanism, a kernel which is to be used to imple-ment AORTA designs must also be able to handle inter-process communication,timeouts, and external communication in a predictable way. Upper bounds canbe placed on communication and timeout delays by checking for these events ateach reschedule point. Resolving choice between communication branches canalso pose problems if it is not managed by a central arbiter, so by having thekernel deal with this at reschedule time many di�culties are alleviated. (It isthis matter of resolving choice which poses the largest practical problem to im-plementing designs on a distributed system.)The software processes which are executed by the kernel are generated fromthe design, using kernel calls to set up internal communications, timeouts andexternal communications. Pieces of sequential code which are to be executedduring a computation delay are given as annotations to the design. These anno-tations are treated as comments as far as the formal semantics of the language isconcerned, but are vital in constructing a working system. Annotations are alsoused to specify branching conditions for data-dependent choices, and to controldata transfer in communications. Currently, the software processes are generatedin C, for purely pragmatic reasons, such as the availability of cross-compilers,and the existence of code timing analysis tools. Any language which is amenableto best- and worst-case timing analysis could be used in principle.A 68000 based kernel providing this scheduling mechanism and o�ering prim-itives for communication and timeouts has been written, and can be used inconjunction with software processes which are automatically generated from anannotated design. The details of the kernel, including a timing analysis of com-putation and communication, is given in [7]. Having considered the implemen-tation AORTA designs, we now go on to consider the problem of verifying thecorrectness of that implementation.4 Veri�cation Techniques for AORTA DesignsThe general problem of design and veri�cation of real-time systems is a di�cultone, and although much research has gone into various aspects of the prob-lem, little has been done to link high-level formal considerations, with low-levelimplementation details. To address this problem we have presented a languagewhich tries to bridge the gap, providing an implementable design language whichhas a formal semantics, and hence can be mathematically reasoned about at ahigh level. The advantage with this approach is that once veri�ed implemen-tation mechanisms have been put in place, high-level formal reasoning can bebrought to bear on actual implementations in a tractable way. AORTA pro-vides a formal virtual machine for real-time systems, in which the domain ofinterpretation is purely temporal: AORTA deals with the time of occurrence ofcommunications (internal and external) and not data. In this respect we can



provide formal veri�cation of a system which uses C code as we can give guar-antees about its time behaviour. For the moment, we address the problem ofverifying the provided implementation mechanisms, as there already exists workin the literature which can be used for verifying the correctness of process alge-bra terms with respect to high-level speci�cations, and in particular on timedmodel-checking [1, 12, 24, 28, 30].From the scheduler, guarantees can be given about upper and lower boundson the amount of processing time each process has per unit of elapsed time. Com-bining this information with upper and lower bounds on the processing time fora piece of sequential code (such as are provided by [31, 32, 33]) can give upperand lower bounds on real execution time for a sequential computation, so veri-fying the bounds given in an AORTA design for a computation delay. Similarly,as the kernel checks for internal communications, timeouts, and external com-munications at regular intervals, upper bounds can be placed on communicationand timeout delays | so verifying the �gures given for the delays function andthe bounds on timeouts. For further details of the detailed timing analysis of thekernel, see [7].5 A Top-to-Bottom Formal Design MethodHaving discussed implementation and veri�cation in the previous two sections,we now look at how the work �ts together into a design method. The overallaim of the project is to provide a veri�able route from a formal speci�cation toan implementation, where time can be reasoned about at all levels, and Fig. 7shows the extent to which we have achieved this, and how further work �ts inwith that already completed. Solid arrows on the �gure indicate routes that areavailable (automated where appropriate), and dashed lines those which are notyet available or have not been automated. In general, arrows going down areconcerned with designing or implementing, and are matched by upward arrowswhich represent the corresponding veri�cation.From the �gure we can see that implementation techniques for AORTA de-signs are quite well developed: a kernel has been written and analysed, givingpredictable performance of processing and communication; code generation (intoC) for each of the processes automates the construction of choices and time-outs, and allows pre-written functional code to be included into the relevantsections. Veri�cation of implementations methods relys on the timing analy-sis of the kernel described in Sect. 3 and in [7] and the code timing techniquesdescribed in [31, 32]. Further work on implementation will try to extend themulti-tasking round-robin scheduling approach described in Sect. 3, by lookingat distributed solutions, alternative scheduling strategies, and will possibly ex-amine implementation of some of the processes in hardware, allowing veri�ablehardware/software co-design. One important piece of veri�cation that remainsto be done is of the functional correctness of the kernel's communication mecha-nism. The problems of verifying the functional behaviour of sequential code maybe addressed by using a formally de�ned real-time language. Finally, as far as
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Fig. 7. AORTA Within a Design Methodimplementation is concerned, a C code timing tool must be integrated into theveri�cation system to deliver the required guarantees of performance.Algorithms for verifying the correctness of a formally de�ned system withrespect to a formal speci�cation written in a timed temporal logic are rela-tively common [1, 12, 24, 30], so we are hoping to use some of these results toprovide automatic veri�cation of AORTA designs with respect to timed logicspeci�cations. A translation of AORTA designs into the timed graphs of [1] ex-ists (although it has yet to be proven correct), which could provide the basis foran automatic model-checking tool. As well as a model-checking approach, a me-chanical proof-checking approach may also be of interest, given the complexityof the model-checking problem, and the size of the state-space in a concurrentsystem. A synthesis of the two approaches might be used, with a proof-checkerused in the higher level veri�cation, using a model-checker once the problemhas been reduced in size, perhaps performing model-checking only on a singleprocess. This last suggestion is seriously hampered, however, by the problem ofrepresentation of real numbers within mechanical proof checkers, so is of a lowerpriority.Currently there are no techniques for verifying the correctness of an AORTAdesign with respect to a high-level speci�cation, but a simulator has been writtenwhich allows designs to be informally checked against their requirements. Before



systems can be veri�ed as correct, they must actually be correct, so in order toavoid wasting time in trying to prove untrue results, the simulator can be usedto test out a design informally before applying the rigour of proof. A simulatoris also useful where a system has to be informally assessed by someone inexpertin formal methods, such as the end user of the system.Functional aspects of system design are not currently considered in AORTA,but this is clearly an important area for future research. At the moment, in orderto include functional code, the code generator uses AORTA designs with sectionsof hand-written C code attached in the relevant places, but these annotationscould be used to not only provide the code, but also to specify the variablesand computations concerned. It may be possible to adapt techniques such asZ [39] or VDM [20] for this purpose, but the introduction of concurrency intothese techniques has proved di�cult in the past; also if such an approach is tobe adopted, a language other than C must be used.6 ConclusionsIn this paper we have presented a process algebra, AORTA, which has beendeveloped speci�cally for use as a design language. The restrictions and extraexpressivity of AORTA, as compared to other timed process algebras, make itpossible to implement time-critical systems and to verify them; tools have beendeveloped to semi-automatically implement designs written in AORTA. The for-mal semantics of AORTA make high-level formal reasoning about designs possi-ble in principle. Combining implementability with high-level reasoning allows ahard real-time system to be developed and veri�ed from speci�cation to imple-mentation.AcknowledgementsThe authors would like to thank the University of Northumbria at Newcastleand Northern IT Research for their �nancial support, and for the anonymousreferees for their comments.References1. R Alur, C Courcoubetis, and D Dill. Model-checking for real-time systems. InIEEE Fifth Annual Symposium On Logic In Computer Science, pages 414{425,June 1990.2. J C M Baeten and J A Bergstra. Real time process algebra. Formal Aspects ofComputing, 3(2):142{188, 1991.3. H Barringer, M Fisher, D Gabbay, G Gough, and R Owens. Metatem: A frame-work for programming in temporal logic. Technical Report Series UMCS-89-10-4,Department of Computer Science, University of Manchester, Oxford Rd, Manch-ester, October 1989.
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