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Abstract. Existing formal methods for real-time largely deal with ab-
stract models of real-time systems, and seldom address implementation
issues; they are mainly used for modelling and specification. In this pa-
per we propose an alternative approach, in which a new timed process
algebra, AORTA| is used as a design language, which can be verifiably
implemented. As well as introducing and formally defining the language,
methods for implementation and verification are discussed.

1 Introduction

Much research effort 1s devoted to real-time systems: theoreticians propose mod-
els for real-time systems and techniques to verify them, whilst operating systems
designers and hardware manufacturers strive to provide yet better performance
from execution platforms. Links between high-level theory and concrete systems
are scarce and usually tenuous, and yet it is vital for theoreticians to apply
their techniques to concrete systems for their results to be of relevance, and for
implementors to see beyond low-level details to be able to provide performance
guarantees about complete systems. The work we describe here is an attempt
to bridge the gap between formal analysis techniques and implementation meth-
ods, by providing a design language with a formal semantics which is verifiably
and semi-automatically implementable. By using our process algebra, AORTA
(Application Oriented Real-Time Algebra), as a design language, systems can
be analysed before they are built, and the systems described can be constructed
to be correct, rather than shown to be correct by post hoc analysis.

There are many timed process algebras other than AORTA, some of which
are reviewed in [27] and [29], including variants of Timed CCS [10, 11, 18, 22,
40, 43], Timed CSP [35], Timed LOTOS [5, 6, 23, 25, 34], Timed ACP [2, 13],
and others such as ATP [28] and CCSR [14]. In Sect. 2.1 we will argue that these
algebras are too expressive to be implementable in general. The implementation
of untimed process algebras has been considered, for example in [16, 41, 42],
but we do not know of any other attempts at direct implementation of a timed
process algebra. Similarly, so far as we are aware, other timed formalisms, such
as Time Petri Nets [4] and Modecharts [19], TAM [36] and CRSMs [37] have
not been used for implementation. Timed logics appear to be most useful for
higher-level specification rather than realisation, notwithstanding work done on
executable temporal logics for prototyping [3, 15, 26].



In this paper we introduce our design language, AORTA in Sect. 2, and
then go on to discuss how AORTA designs can be implemented in Sect. 3. The
verification of implementations is addressed in Sect. 4, and Sect. 5 describes how
the work fits in to an overall design method, and the directions for further work.
Finally, Sect. 6 presents our conclusions.

2 An Application-Oriented Real-Time Algebra

2.1 Why A New Timed Process Algebra?

Untimed process algebras can be used as wide-spectrum languages, i.e. they
can be used for specification, design, and to some extent implementation, using
bisimulation as a proof technique to show the equivalence of different levels of
abstraction. Although timed bisimulations can be defined, the level of detail of
the model makes the equivalence relation derived from a timed bisimulation a
very fine one; too fine, it would appear, to be useful, because although many peo-
ple have defined timed bisimulation, no realistic examples exist (see also [29]).
It has often been suggested that preorders, relating different levels of abstrac-
tion within the same basic language, should be used to allow refinement in the
design process. Again, some untimed preorders do exist, but we have not come
across any useful timed preorders which deal with concurrency. As many timed
process algebras are based heavily on untimed algebras, they have many of the
structures which make untimed algebras suitable as wide-spectrum languages,
without providing useful proof techniques to go with them. Rather than try to
use a timed process algebra as a wide-spectrum language, we have chosen to
restrict the algebra to a design language, and to use other techniques, such as
model-checking, for verifying correctness between levels of abstraction.

Because existing timed process algebras are meant to be used as specification
and modelling languages they are required to be expressive, but the expressiv-
ity required precludes implementation in general. For example, most of the lan-
guages which can handle concurrency allow dynamic process creation via parallel
composition, and it becomes very difficult to verify timing in a system where pro-
cesses can be created or destroyed. Also, the languages provide a very detailed
model of the timing of events within a system, the accuracy of which is very
difficult to provide in implementation — giving delays as exact figures, rather
than bounds, makes the construction of systems which have that behaviour im-
practical. Most of the novel features of our language arise from implementation
considerations. Two such features are those just mentioned: the number of pro-
cesses 1n a system is statically defined, and computation and communication
times can be bounded rather than given exactly (the bounds given in languages
such as [10, 11, 34] refer to the times at which actions become available and
unavailable, and are not able to introduce the nondeterminism associated with
computation times). The other major feature of AORTA is that communication
between processes can only occur along predefined routes, to aid implementa-
tion and to reduce the complexity of the verification problem. Timed process



algebras can be categorised by the time model that they use, some arguing that
a dense time model makes verification too complex, and some that a discrete
time model does not accurately describe system behaviour. To try and get the
best of both worlds, AORTA can use a discrete or a dense time domain (but not
both at once).

AORTA 1s described in more detail in the following subsections, by first
giving the concrete syntax and informal semantics, then a small example, before
defining the abstract syntax and giving the formal semantics in terms of a timed
transition system definition.

2.2 Concrete Syntax and Informal Semantics

AORTA is similar to CCS, both in notation (. for action prefixing and + for
choice) and in semantics (only two-way synchronisation allowed), but is both
more expressive, in that timing details can be included explicitly, and more
restrictive, to allow for implementation. One of the restrictions placed on the
language is that the number of processes in a system may not vary, and this
restriction is enforced by insisting that all parallel composition should appear at
the top level. This gives rise to two levels of description: one for the sequential
processes within a system, and another for the parallelism and connectivity of
the system. Restricting systems to a fixed number of processes is not uncommon
in real safety-critical systems, and the limitations imposed are partly justified
by the verifiable implementation techniques described in section 3. As AORTA
is in some ways similar to CCS, some familiarity with CCS is assumed in the
following.

Sequential Processes. The description of sequential processes is where the
relation of AORTA to CCS is shown most strongly. Actions can be offered,
which must be matched by a communicating partner before the process can
proceed, and a choice may be offered between a number of actions. As in CCS,
action prefix and choice (sometimes called summation) are represented by . and
+ respectively, with 0 for the null process which offers no actions. Recursion can
be written using the same equational format as used in CCS (e.g. & = a.A),
but all recursion must be guarded (i.e. all process names must appear inside
an action prefix). The other constructs do not have analogues in CCS, and are
concerned with including time information into the process description.

There are two constructs which are used to introduce time, and each of these
has a deterministic and nondeterministic form. The first construct is a delay
which causes the process to pause for the amount of time specified, during which
time no actions are offered — time consuming operations such as computation
are represented in this way. As precise times are not always known the delay
may be specified with an upper and lower bound, rather than a precise figure.
A process which delays for precisely ¢ time units before behaving like S is writ-
ten [t]S, and if the delay 1s bounded by times 1 and #2 the process is written
[t1,t2]S. The second construct is a timeout extension to summation, so that if



none of the branches of the choice are taken up within the given time, control is
transferred to another branch. Again, depending on how the timeout is imple-
mented a precise figure for the time at which control is transferred may not be
available, so an interval of possibilities can be given instead. A process S which
times out to process T' if no communication happens within time ¢ is written
S [t> T, and if the time is bounded by ¢1 and 2 it is written S [t1,t2> T.

Having given the time behaviour of our new constructs it is necessary to
go back to describe the time behaviour of prefix and choice. A simple prefix
forces the process to wait until communication can take place on the named
channel, so the process a.S can wait for any length of time without changing,
provided communication is not possible. Consideration of how a choice should
behave in time leads us to restrict choice to processes which start with an action
prefix or another choice. If a choice were allowed between processes that began
with a delay, e.g. [3]a.0 + [2]b.0, then either the choice would have to be
resolved at the first instant of time, leading to time nondeterminism (and a
very counter-intuitive system), or both branches of the choice would have to
run concurrently, which goes against the idea of a sequential process. As both
of these are unacceptable, we restrict the language so that choices can only be
made between processes which start with an action prefix or another choice.

One of the reasons for uncertainty in the execution times of programs is that
there is no information available about the run-time data — either we don’t know
what the data is or we choose to ignore it to avoid complexity. At the moment no
attempt 1s made to model data in AORTA, so any branch in a sequential process
which depends purely on data (in particular on the outcome of a computation)
rather than on communication (which is handled by the existing choice) appears
to be nondeterministic. To allow for such branches, a nondeterministic choice
can be offered between two (or more) processes: such a choice is written P++Q,
and is similar to the nondeterministic choice P M @ of CSP.

In summary, a sequential process may be constructed from action prefixes,
summations (choices over prefixed processes), time delays, timeouts over choices,
nondeterministic choices and guarded recursion. The syntax is summarised in
Table 1. Each process has a behaviour in time which says which actions it is
prepared to engage in, or in other words, at which of its gates it is prepared to
engage in communication. Obviously, for communication to take place there has
to be more than one process in the system — the way that a system is constructed
from its component processes is kept separate from process definition in AORTA.

Parallel Composition and Communication. Apart from fixing the number
of processes in a system in order to provide reliable timing predictions (see
section 3), there are other steps which can be taken to aid implementability.
One area which is crucial to process algebras and real-time systems is inter-
process communication, and this is perhaps where AORTA is most different
from other process algebras.

In all of the common process algebras the communication actions of any pro-



prefix a.S

choice S1 + 82

delay [t]s

bounded delay [t1,t2]8

timeout (81 + ... + Sn)[t>8
bounded timeout (81 + ... + Sn)[t1 ,t2>S|
nondeterministic choice S1 ++ S2
recursion equational definition

Table 1. Summary of AORTA concrete syntax

cess are visible to any other process unless explicitly hidden or restricted, which
leads to problems on two fronts. From an implementation point of view this
requires some way of broadcasting all available actions to all processes. Even
more problems are encountered in implementing the multiway synchronisation
of CSP and LOTOS, as witnessed by the restriction to two-way communication
in occam [21] and the need for a special protocol in LOTOS [38]. For a simple
system, which 1s all we can hope to formally verify at the moment, the mech-
anism for managing such communication facilities may be an excessively costly
overhead, both in terms of implementation and verification.

The availability of all actions to all processes can also cause problems in
verification, as checking for all possible communications requires testing of each
pair of processes for communication on each action, leading to an explosion in
the number of checks to be made. This explosion can be contained by restricting
communication to a named set of channels between processes. There i1s an anal-
ogy here with sequential programming, where the techniques of object-oriented
and functional programming have tried to limit the means of access to each part
of the program data, making reliable and verifiable design easier. As AORTA is
to be used as a kind of parallel programming language which admits verification,
similar restrictions on the availability of program data and communication will
ease verification.

In the light of these problems, AORTA requires explicit connections to be
made for a communication to become possible, and these connections are made
statically in the system definition. Each process has a set of named gates (like
the syntactic sort of CCS), and communication links between processes are made
by explicitly naming pairs of gates to be linked. By using explicit linking the
restriction or hiding operators of other process algebras are not needed, and by
allowing gates with different names to be linked, renaming operators become
unnecessary.

Two or more processes may be put in parallel using |, so that P|Q|R repre-
sents three processes in parallel, where each of P, Q, and R is a sequential process.
In order to enable communication, a collection of processes may have pairs of
gates linked, using a connection set written in angle brackets after the processes.
The use of AORTA is now illustrated with a small example.



2.3 An Example: A Temperature Conversion Process

In order to demonstrate the language constructs in action, this section develops
an AORTA description of a temperature conversion process, which may be used
as a component of a plant control system. A first attempt at a conversion process
simply takes input on one gate, computes the new format, which takes between
0.1 and 0.15 seconds, and then outputs this new data before restarting. It looks

like this:
Convert = in.[0.1,0.15]out.Convert

A more sophisticated process might have different conversion modes which
it can use, which are changed by another controlling process. This would be
represented by

Convert = in.[0.1,0.15]out.Convert
+
mode. [0.3,0.4]Convert

where a piece of reconfiguration code, which takes between 0.3 and 0.4 seconds,
will execute if communication takes place on the mode gate.

In order to ensure that output data is up to date, the process may wish to
time out on the out communication, to reread and recompute the output value.
A timeout of about 1.5 seconds could be added:

Convert = in.[0.1,0.15]
(out.Convert)[1.45,1.55>Convert
+
mode. [0.3,0.4]Convert

Note the use of brackets to indicate that the timeout takes place over the out
communication, rather than in.

Finally, the process may wish to check the bounds of its input value, and
send a warning signal to another process if it lies above a certain threshold. This
is written using a nondeterministic (data-dependent) choice, where the right
branch should be chosen if there is a problem with the input value.

Convert = in.(Convert2 ++ warning.Convert2)
+
mode. [0.3,0.4]Convert
Convert2 = [0.1,0.15]
(out.Convert)[1.45,1.55>Convert

A plant control system incorporating the Convert process with a Control
process and a Datalogger process is shown in Fig. 1, and may written as follows:

( Control | Convert | Datalogger )
<(Control.changem,Convert.mode),
(Control.temphigh,Convert.warning),



in

changem mode

Control Convert  ou sedta  Datal ogger

temphigh warning

Fig.1. A Plant Control System

(Convert.out,Datalogger.getdata),
(* connections between Control and Datalogger *)
>

Here the Control process may request a change of conversion mode via its
changem gate, and notes any warning signals on its temphigh gate. The output
of Convert is sent to Datalogger, for possible future analysis. A description of
this system is also given in [8]. Common solutions to real-time problems can be
expressed in AORTA, in particular, resource contention can be handled with
choice, and polling loops can be implemented with timeouts. More involved
examples have been developed using AORTA | including a car cruise controller.

2.4 The Abstract Syntax of AORTA

In the abstract syntax of AORTA, a system is expressed as a product of se-
quential processes; each of which has a set of gates; gates of processes can be
connected pairwise to allow communication. A system expression is then written

P=][sSi<K>
iel
where each S; is a sequential process, and K is a set of unordered pairs of gates
to be linked. Each gate is specified by its process (i.e. an element of I) and its
name. At this level the communication delay bounds for each gate must also be
specified; for linked pairs the bounds will be the same and will depend on internal
communication delays, but for unlinked gates (i.e. gates that communicate with
the environment) the delay will depend on what is being accessed and how.
The delay bounds are specified by giving a function delays which takes a gate
identifier, and returns an interval of possible communication delay times. This
function is defined at the system level, when the details of how gates of processes
are to be connected is known.
The structure of sequential expressions is given by the syntax

Su=ar S | (S| D arSintS | [t 62)S | D> anSipiS | @S | X

el i€l i€l i€l



where ¢, ¢, and ?2 are time values taken from the time domain (either the pos-
itive reals or the naturals), and X is taken from a set of process names used
for recursion. These constructs correspond to action summation (a combina-
tion of action prefixing and choice), deterministic delay, deterministic timeout,
nondeterministic delay, nondeterministic timeout, nondeterministic choice and
recursive definition respectively.

There 1s a subset of these sequential expressions, the regular expressions,
which 1s defined to be the set of expressions which evaluate to true under the
function regular given in Fig. 2. Informally, regular expressions are those ex-

regular(z a;.S;) = true
i€l
regular([t]S) = regular(S)
regular(z a;.S; I>tS) = regular(S)
i€l
regular([t1,t2]5) = false

regular(z a;.S; DifS) = false
il
regular(@ Si) = false
i€l
regular(X) = false

Fig. 2. Definition of regular

pressions which do not involve any nondeterminism (via delays, timeouts or
nondeterministic choices) before the first action summation, and which contain
only guarded recursion — the condition on guardedness is that all recursion
should be guarded once reformulated as a fixed point.

The translation of a concrete syntax term into the abstract syntax is fairly
direct, but does raise some interesting points. For reasons already stated, we do
not wish to deal with bisimulations, but there is an equivalence which yields some
of the less interesting equalities on terms, namely syntactic equality on abstract
syntax terms, modulo arithmetic and set equality. Because choice and parallel
composition are indexed by sets in the abstract syntax, it does not matter in
which order the subterms appear in the concrete syntax. This renders laws such
as the commutativity and associativity of the concrete syntax + and | immediate,
as well as the law P + 0 = P, where 0 has the usual translation of summation
over the empty set.



2.5 The Formal Semantics

In order to define the semantics of system expressions, the semantics of regular
sequential expressions is given first. As usual for an operational semantics, a set
of transition rules is given, from which is constructed the least relation to satisfy
all of the rules. This semantics depends heavily on the Poss function, which
describes all of the possible ways in which a non-regular (i.e. nondeterministic
or recursive) expression can be resolved into a regular expression. Transition
rules are only defined for action summation, timeout and deterministic delays
because all other terms are non-regular; note that all terms on the right hand
side of transition arrows are regular (in particular, all elements of Poss(S) are
regular), so the transition relation is well-defined on regular expressions. There
are two types of transitions, namely action transitions, written — where a is

t)

a gate name, and time transitions, written ), where t 1s a value in the time
domain. Later on we will use a distinguished action transition — to represent
internal communication. The rules are given in Fig. 3, and the auxiliary function
Poss is defined in Fig. 4.

When an action transition takes place, a communication delay is prefixed to
the process, and all nondeterminism up to the next action 1s resolved, in accor-
dance with the Poss function. This is not only convenient from a theoretical
standpoint, but does correspond to the situation in a real system. The nondeter-
minism comes from a lack of knowledge about data in the system, and a lack of
predictability as regards scheduling and communication delays; once a process
has communicated, all of its data is fixed until the next possible communication,
and if a scheduling mechanism such as that outlined in Sect. 3 is used, then once
the starting time of a computation or communication is known, its completion
time can be calculated exactly.

Fach system expression is described as a product of (regular) sequential ex-
pressions, and the transitions of a system are derived from the transitions of each
of its component processes as would be expected. The transition rules for system
expressions are given in Fig. 5, but the transition system cannot be formed as the
usual least relation, because of the negative premise of the rule for delay. Prob-
lems with negative premises in transition system specifications are discussed in
[17], and a technique called stratification is provided to give a meaning to such
transition systems. Applying this to AORTA, all of the transitions of sequential
expressions should be worked out first, then all internal communications of sys-
tem expressions, and finally the time transitions and external communications
of system expressions. By applying the transition rules in three stages we ensure
that no transition’s validity depends on its own negation, as may be the case in
a transition system with negative premises; this layering is equivalent to a three
layer stratification. For further details, see [17].

The rule for external communication also has a negative premise attached,
in order to enforce a simple priority on actions: here we insist that internal
communications be preferred to external ones, as the permanent availability of
some environment actions may make choices unfair. A similar technique can be
used to attach a full set of priorities to the actions, both internal and external,



7 €1,5; € Poss(S;)

aj t' € delays(a ()
Dier a:.8i—[t]5] vs(as) Dier @-Si—= ) e @S
— <t _
[t]SQ[t —tSs [t]SﬂS

o 7 €1,5: € Poss(S;)
Yy 00.5i b

- V<t
Yier i8S asiptS Y ep wi-Si 45 LS

51115, 525,

Sl('fl_-l'tg)s3

Fig. 3. Transition rules for regular expressions

Poss(z a;.S;) = {Z a;.S:}

el el
Poss([t]S) = {[t]S'|S’ € Poss(S)}

Poss(z a;.S; I>tS) = {Z a;.S; I>tS/|S/ € Poss(S)}
el el
Poss([t1,12]S) = {[t]S'|t € [t1,12], 5" € Poss(S)}

Poss(D>_aiSi>28) = ) aiSi b |t €[, 1], 5" € Poss(S)}
1€ 1€
Poss(EP) S:) = {Sili € 1, 5! € Poss(S.)}
1€

def

Poss(X) = Poss(S) it X =S
Fig. 4. Definition of Poss

allowing one internal communication to be preferred to another and so on. In
order to give a well defined semantics to this, negative premises can be attached
to all actions other than the highest, stating that the communication may not
take place if any higher priority action is possible. A larger stratification is then
used, with a different stratum attached to each priority level, as well as strata
for sequential processes and time transitions.

As well as a stratification, the rule for delay uses an auxiliary function, Age,
which is defined on regular expressions as in Fig. 6. This function is really meant
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Fig. 5. Transition rules for system expressions

to make the side-condition easier to express, as the Age function takes a process
and a time, and returns the state of the process after having delayed for the
specified time. This is captured in the theorem

Theorem 1 For any regular sequential expressions S and S’ and any time t

S8 s Age(S,t) = S

where = 1s syntactic identity modulo equality on time expressions

Age(z a;.5;, t/) = Z a;.S;

1€l

Age([t]S, 1) = {

Age(z ;.5 1S 1) =
=

1€l
[t—1]S <
S (t' =
Age(S,t' —t) (' >
S

S ieranSi TS (1 < )
S (t'=1
Age(S,t' — 1) (' >1)

Fig. 6. Definition of Age



The intuitive interpretation of the transition system formed by these rules
is worth mentioning, as there is often some ambiguity, particularly in untimed

®

algebras, as to what it all means. The two types of transition, — and —=
correspond to ability to communicate and ability to age. If S——S’ then S is
ready to communicate externally on gate @, and if this communication takes
place the process will then become S’. If a system can communicate internally
then it does (maximum progress principle, as enforced by the side condition on
the delay rule), and this is represented by the distinguished action —. If more
than one 7 action is possible then a nondeterministic choice is made between the

available actions. The 0N transition describes how a system or process may age
in time, and it is a property of the system that any process has only one way in
which to age: in other words, it is time deterministic. The behaviour of a system
1s then represented by a a series of transitions, with the behaviour of the environ-
ment affecting which external communication events (——) take place. As each
communication has a minimum (non-zero) delay attached, only finitely many ex-
ternal events can occur within a finite time, so the system has finite variability;
as the number of processes is fixed, it also has bounded variability [27].

3 Implementation of AORTA designs

As the most important feature of AORTA is its implementability, we describe
in this section work done on implementing AORTA designs. The aim of this
part of the work is to provide semi-automatic procedures for producing concrete
systems from AORTA designs. We have chosen to implement AORTA designs
as software processes multitasking on a single processor, as this is probably the
most common solution for small embedded systems, but the process abstraction
can model distributed processing, and hardware processes. The software pro-
cesses are generated from an annotated AORTA design, compiled and statically
analysed. When these processes are executed with a dedicated predictable ker-
nel [7], the overall system performance can be analysed, and checked against a
high-level formal specification.

Having fixed on a multitasking solution, the next decisions to be made are
what kind of scheduling policy should be used, and how to implement message
passing between processes; these are the two facets that are most important in a
real-time kernel. There are very many scheduling policies available (see [9] for a
review), many of which use quite sophisticated techniques to extract maximum
performance from the available hardware. For the moment we are content with
predictability of performance, rather than good average performance, so we have
chosen to use a fixed time slicing round-robin scheduler, as this guarantees that
each process will get processing time in all circumstances (even if it doesn’t
necessarily need it), eliminating the interdependence of processes except where
made explicit in a communication request. In adopting this approach we are
sacrificing some efficiency for a reduction in the effort required to predict the
performance of the system. As hardware costs are relatively small compared with



software development and verification costs, we feel this tradeoff 1s justified in
many cases. If more efficiency is required, then a more complex scheduling policy
could be used, but the effort required to predict performance would be higher.

Apart from a scheduling mechanism, a kernel which is to be used to imple-
ment AORTA designs must also be able to handle inter-process communication,
timeouts, and external communication in a predictable way. Upper bounds can
be placed on communication and timeout delays by checking for these events at
each reschedule point. Resolving choice between communication branches can
also pose problems if it is not managed by a central arbiter, so by having the
kernel deal with this at reschedule time many difficulties are alleviated. (It is
this matter of resolving choice which poses the largest practical problem to im-
plementing designs on a distributed system.)

The software processes which are executed by the kernel are generated from
the design, using kernel calls to set up internal communications, timeouts and
external communications. Pieces of sequential code which are to be executed
during a computation delay are given as annotations to the design. These anno-
tations are treated as comments as far as the formal semantics of the language is
concerned, but are vital in constructing a working system. Annotations are also
used to specify branching conditions for data-dependent choices, and to control
data transfer in communications. Currently, the software processes are generated
in C, for purely pragmatic reasons, such as the availability of cross-compilers,
and the existence of code timing analysis tools. Any language which is amenable
to best- and worst-case timing analysis could be used in principle.

A 68000 based kernel providing this scheduling mechanism and offering prim-
itives for communication and timeouts has been written, and can be used in
conjunction with software processes which are automatically generated from an
annotated design. The details of the kernel, including a timing analysis of com-
putation and communication, is given in [7]. Having considered the implemen-
tation AORTA designs, we now go on to consider the problem of verifying the
correctness of that implementation.

4 Verification Techniques for AORTA Designs

The general problem of design and verification of real-time systems is a difficult
one, and although much research has gone into various aspects of the prob-
lem, little has been done to link high-level formal considerations, with low-level
implementation details. To address this problem we have presented a language
which tries to bridge the gap, providing an implementable design language which
has a formal semantics, and hence can be mathematically reasoned about at a
high level. The advantage with this approach is that once verified implemen-
tation mechanisms have been put in place, high-level formal reasoning can be
brought to bear on actual implementations in a tractable way. AORTA pro-
vides a formal virtual machine for real-time systems, in which the domain of
interpretation is purely temporal: AORTA deals with the time of occurrence of
communications (internal and external) and not data. In this respect we can



provide formal verification of a system which uses C code as we can give guar-
antees about its time behaviour. For the moment, we address the problem of
verifying the provided implementation mechanisms, as there already exists work
in the literature which can be used for verifying the correctness of process alge-
bra terms with respect to high-level specifications, and in particular on timed
model-checking [1, 12, 24, 28, 30].

From the scheduler, guarantees can be given about upper and lower bounds
on the amount of processing time each process has per unit of elapsed time. Com-
bining this information with upper and lower bounds on the processing time for
a piece of sequential code (such as are provided by [31, 32, 33]) can give upper
and lower bounds on real execution time for a sequential computation, so veri-
fying the bounds given in an AORTA design for a computation delay. Similarly,
as the kernel checks for internal communications, timeouts, and external com-
munications at regular intervals, upper bounds can be placed on communication
and timeout delays — so verifying the figures given for the delays function and
the bounds on timeouts. For further details of the detailed timing analysis of the
kernel, see [7].

5 A Top-to-Bottom Formal Design Method

Having discussed implementation and verification in the previous two sections,
we now look at how the work fits together into a design method. The overall
aim of the project is to provide a verifiable route from a formal specification to
an implementation, where time can be reasoned about at all levels, and Fig. 7
shows the extent to which we have achieved this, and how further work fits in
with that already completed. Solid arrows on the figure indicate routes that are
available (automated where appropriate), and dashed lines those which are not
vet available or have not been automated. In general, arrows going down are
concerned with designing or implementing, and are matched by upward arrows
which represent the corresponding verification.

From the figure we can see that implementation techniques for AORTA de-
signs are quite well developed: a kernel has been written and analysed, giving
predictable performance of processing and communication; code generation (into
C) for each of the processes automates the construction of choices and time-
outs, and allows pre-written functional code to be included into the relevant
sections. Verification of implementations methods relys on the timing analy-
sis of the kernel described in Sect. 3 and in [7] and the code timing techniques
described in [31, 32]. Further work on implementation will try to extend the
multi-tasking round-robin scheduling approach described in Sect. 3, by looking
at distributed solutions, alternative scheduling strategies, and will possibly ex-
amine implementation of some of the processes in hardware, allowing verifiable
hardware/software co-design. One important piece of verification that remains
to be done is of the functional correctness of the kernel’s communication mecha-
nism. The problems of verifying the functional behaviour of sequential code may
be addressed by using a formally defined real-time language. Finally, as far as
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implementation is concerned, a C code timing tool must be integrated into the
verification system to deliver the required guarantees of performance.

Algorithms for verifying the correctness of a formally defined system with
respect to a formal specification written in a timed temporal logic are rela-
tively common [1, 12, 24, 30], so we are hoping to use some of these results to
provide automatic verification of AORTA designs with respect to timed logic
specifications. A translation of AORTA designs into the timed graphs of [1] ex-
ists (although it has yet to be proven correct), which could provide the basis for
an automatic model-checking tool. As well as a model-checking approach, a me-
chanical proof-checking approach may also be of interest, given the complexity
of the model-checking problem, and the size of the state-space in a concurrent
system. A synthesis of the two approaches might be used, with a proof-checker
used in the higher level verification, using a model-checker once the problem
has been reduced in size, perhaps performing model-checking only on a single
process. This last suggestion is seriously hampered, however, by the problem of
representation of real numbers within mechanical proof checkers, so is of a lower
priority.

Currently there are no techniques for verifying the correctness of an AORTA
design with respect to a high-level specification, but a simulator has been written
which allows designs to be informally checked against their requirements. Before



systems can be verified as correct, they must actually be correct, so in order to
avoid wasting time in trying to prove untrue results, the simulator can be used
to test out a design informally before applying the rigour of proof. A simulator
is also useful where a system has to be informally assessed by someone inexpert
in formal methods, such as the end user of the system.

Functional aspects of system design are not currently considered in AORTA,
but this is clearly an important area for future research. At the moment, in order
to include functional code, the code generator uses AORTA designs with sections
of hand-written C code attached in the relevant places, but these annotations
could be used to not only provide the code, but also to specify the variables
and computations concerned. It may be possible to adapt techniques such as
Z [39] or VDM [20] for this purpose, but the introduction of concurrency into
these techniques has proved difficult in the past; also if such an approach is to
be adopted, a language other than C must be used.

6 Conclusions

In this paper we have presented a process algebra, AORTA, which has been
developed specifically for use as a design language. The restrictions and extra
expressivity of AORTA | as compared to other timed process algebras, make it
possible to implement time-critical systems and to verify them; tools have been
developed to semi-automatically implement designs written in AORTA. The for-
mal semantics of AORTA make high-level formal reasoning about designs possi-
ble in principle. Combining implementability with high-level reasoning allows a
hard real-time system to be developed and verified from specification to imple-
mentation.
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