
Practical Formal Development of Real-Time SystemsS. P. Bradley W. D. Henderson D. Kendall A. P. RobsonDepartment of ComputingUniversity of Northumbria at NewcastleNewcastle-upon-Tyne, NE1 8ST, UKAbstractThe complexities of real-time systems are such thatit is often thought necessary to give a formal justi-�cation of their correctness, especially if they are tobe used in a safety-critical environment. In this pa-per we describe our work on a formally based designmethod for real-time systems which allows the timingaspects of a concurrent system to be mathematicallydescribed and veri�ed, as well as semi-automaticallyimplemented. Our design language, AORTA, is atimed process algebra, with features to ensure that alldesigns can be implemented. A predictable real-timekernel is also described, which is used in the construc-tion of a system from an AORTA design, and whichallows the timing of the implementation to be veri�ed.1 Background and motivationThere is much existing work on methods for real-time systems, both on the theoretical aspects of veri-fying the correctness of a real-time system [1], and onthe practical ways of guaranteeing performance via areal-time kernel [2], but little that links the two. Ifpractical formal techniques are to be found for real-time systems, then both high-level, more theoreticalaspects must be considered as well implementationperformance issues such as scheduling. There is somework which attempts to link the higher and the lowerlevel, such as the implementation of formal models bycompilation of (untimed) LOTOS [3, 4], or the over-all system design methodology of the (non-formallybased) MARS project [5], but we are not aware of anywork that addresses the practical design, implemen-tation, and formal veri�cation of a time-critical sys-tem. In response to this apparent lack, we have devel-oped a formal design language based on process alge-bra called AORTA (Application Oriented Real-TimeAlgebra) [6], with the speci�c aim of providing a com-

plete route from a (timed) formal speci�cation to averi�ed implementation.The �rst goal of our project has been to provide ameans of producing a real-time system from its formalexpression in AORTA, as most of the existing theoreti-cal work covers the veri�cation of a design with respectto a formal speci�cation. Work on real-time kernelshas made advances in ensuring that processes will getthrough their work as quickly as possible. Sometimes,however, this is at the expense of making the schedul-ing arrangements too complex to be able easily toprovide reliable predictions about the performance ofan interacting set of processes. Whilst priority-basedscheduling algorithms may be provably optimal, it isnot always optimality that is important | in particu-lar, predictability of time-critical systems can be cru-cial. On this basis we have reverted to a very simpleyet predictable �xed time-slice round-robin scheduler,so that timing is easier to predict, as the performanceof each process does not depend on the performance ofothers except at explicit communication or synchroni-sation points. The e�ciency sacri�ced in using sucha scheduling mechanism is balanced with the reducedcost of developing a veri�ed system; as hardware costsare relatively low compared with development costs,we feel that this tradeo� is often justi�ed.The kernel also provides sound, safe and predictablecommunication primitives, based on Ada style syn-chronous communication, which correspond directlyto the communication constructs in the AORTA de-sign language. Together with a timeout facility, thisprovides a direct route to implementation, by C codegeneration from the AORTA design. Although theAORTA design only deals with the timing and inter-communication of the processes, the sequential codewithin a process is included in a manageable way,and the timing of non-generated code is veri�ed bya combination of bounds on processing time of thecode and the processing distribution �gures availablefor the kernel in [7].

2 The AORTA design languageTimed process algebras are widely known, but areusually used for modelling or specifying real-time sys-tems, rather than designing them. Our language,whilst having some features in common with timed(and untimed) process algebras, is distinguished byits implementability. There are two main points of dif-ference, the �rst being that the number of processeswithin a system is constant throughout the lifetimeof the system, making processor allocation, and hencecomputation times, easier to verify. Secondly, all tim-ings in the design can be expressed as upper and lowerbounds, rather than exact �gures, as in reality boundscan usually be given, where precise �gures may not ex-ist. It is this representation of time bounds which ismost problematic in existing timed process algebras.In order to keep the model of the timing tractable,data within a system is not represented in AORTA,with all computation being represented only by the(bounds on the) amount of time required to completeit. Within each process communication is representedby the name of the gate on which communication isto take place, and bounds are placed on the amountof time between both sides of the communication be-ing ready, to the communication actually taking place.Processes are written in a simple equational format,similar to that used in many other process algebras.A process writtenConvert = in.[100,150]out.Convertwill wait for communication on its in gate, before do-ing some computation which lasts for between 100 and150 milliseconds (any time units, discrete or dense maybe chosen for a design | [0.1,0.15] would be an equallyvalid expression) and o�ering communication on itsout gate. Once this second communication has takenplace the process will start again waiting for an incommunication. This is how a process which acceptedtemperature data and converted it to a di�erent for-mat would be expressed. The bounds on communi-cation times are given by a separate function whichtakes a gate identi�er and returns a time interval.A choice construct is provided, similar to the + ofCCS and the select statement of Ada, which allowsseveral possible communications to be o�ered. Thefuture behaviour of the process depends on which iscompleted �rst. Timeouts may also be de�ned, sothat if none of the communication choices o�ered aretaken up within a certain time, then control passes toanother branch. Again, exact �gures are not usuallyavailable for occurrences of timeouts, so bounds are

used instead. If our Convert process is to accept inputor allow its conversion mode to be changed, this wouldbe writtenConvert = in.[100,150]out.Convert+mode.[300,400]Convertwhere the recon�guration procedure takes between300 and 400 milliseconds. If the data o�ered on theout gates is also to be kept up to date then it mayneed to be refreshed every 1.5 seconds or so, which isachieved by adding a timeout to the out communica-tion:Convert = in.[100,150](out.Convert)[1450,1550>Convert+mode.[300,400]Convertwhere 1450 and 1550 are estimates on the boundswhich can be placed on a timeout of about 1500 mil-liseconds.The last construct which can be used in the de�ni-tion of individual processes is a data-dependent choice,used where the
ow of control of the process dependson the value of some data in the system. Data is notmodelled in AORTA, so this is essentially a nondeter-ministic choice as far as the process algebra is con-cerned. The choice between two possible behavioursis represented by ++, so that if our Convert process isto give a warning if the value that it �nds is outside acertain range, this would be writtenConvert = in.(Convert2 ++ warning.Convert2)+mode.[300,400]ConvertConvert2 = [100,150](out.Convert)[1450,1550>ConvertA system usually consists of the parallel composi-tion of two or more processes; this is represented usingthe traditional process algebra bar |, with a connec-tion set showing pairs of gates which may communi-cate. This explicit connection of gates allows for amore e�cient implementation, and simpli�es veri�ca-tion. The connection set is represented by pairs of gateidenti�ers written in angle brackets after the processesof the system. A plant control system incorporatingthe Convert process with a Control process and aDatalogger process, is written as follows:Tempsys =(Control | Convert | Datalogger)<(Control.changem,Convert.mode),

(Control.temphigh,Convert.warning),(Convert.out,Datalogger.getdata),connections between Control and Datalogger>The ordering of the pairs of gates is not important,and not all gates of the processes need be connected:those left free will have to communicate with the envi-ronment, like the in gate of our Convert process. Fig-ure 1 gives a diagrammatic representation of Tempsys.Most features of typical small embedded systemscan be designed using this language: resource con-tention can be handled with the choice construct, andpolling loops with a timeout. As well as allowing im-plementation, AORTA has a formal semantics givenin terms of a timed transition system, which allowsformal reasoning to be done about the design, and thepossible application of model-checking techniques suchas [8, 9]. Space does not allow us to go into the detailsof the semantics here, but see [6] for more details |it remains now to show how AORTA designs can beimplemented in practice.3 Implementation and the kernelAs the main point of the AORTA design language isits implementability, we outline here the kernel whichwe have written which allows AORTA designs to beveri�ably implemented. We mentioned earlier that wehave adopted a very simple approach to schedulingin order to be able easily to verify the performanceof each of the processes. This is achieved by using a�xed time-slice round robin scheduler, where a �xedschedule of processes is executed on the kernel at a�xed frequency, so that each process has a guaranteedamount of processing time per unit real time, unaf-fected by the performance of the other processes. For agiven amount of processing time required, bounds canbe put on the amount of real time required, so thatthe timing of a piece of sequential computation caneasily be veri�ed given the processing requirements ofthat computation. Bounds on the computation timerequired for a piece of code can be found using tech-niques such as described in [10].At each scheduling point, the kernel checks throughthe list of connected gates to see if there is a pairwhich is ready; if there is then it e�ects the commu-nication, signalling to the processes involved that ithas taken place, and disables communication on gateswhich were in choice with the successful gates. It thenlooks for possible external communications (on gatesthat are left unconnected) before looking through the

list of timeouts to see if any have exceeded their timelimit. By checking for communications and timeoutsat every reschedule, bounds can be placed on the timefor a communication to take place once enabled, andfor a timeout to come into e�ect.Communication primitives are o�ered by the kernelas C functions which are called from the processes.The calls to the kernel are generated automaticallyfrom the design, along with the parameters of the ker-nel, such as the number of processes, and the gateswhich are to be connected. Details such as the codeto be executed as part of a computation delay, thedata to be passed in the communication, and the con-ditions for a data-dependent choice are attached asannotations to the design. They have no interpreta-tion in the formal semantics, where they are viewed ascomments, but they allow the code to be included inthe correct place without having to edit the code gen-erated from the design. Putting the kernel togetherwith the generated code allows an implementation tobe generated automatically from an annotated design.The pieces of sequential code still have to be hand con-structed, but once written, their timing, and hence thetiming of the whole system can be veri�ed.4 Current and future workThe work on providing a route from design to im-plementation is complete, so that a system can be builtautomatically from its design. Although all of the veri-�cation methods are manually available, they have notyet been integrated into a single tool. The veri�cationof an AORTA design will be addressed soon, but thereis currently a simulator tool, which allows a design (in-cluding its timing) to be tested out by a user as the�rst step in a veri�cation process. It is hoped thatexisting formal veri�cation methods (such as [8, 9])may be applicable. Figure 2 shows how the work �tstogether: arrows going downward represent implemen-tation, arrows upwards veri�cation; solid arrows indi-cate currently available routes, automated where ap-propriate, and the dashed arrows represent possiblefuture pieces of work. Other implementation routesmay be the subject of future work, such as distributedimplementations or kernels based on other schedulingmechanisms. One particularly interesting piece of fu-ture work would be the integration of existing formalmethods for developing sequential code (such as Z [11]or VDM [12]) with AORTA, so that the timing of asystem and its functional correctness could be veri�edin a uni�ed way.

Control Convert getdata Datalogger

in

out

changem mode

connections between Control and Datalogger

temphigh warningFigure 1: Connectivity of Tempsys
AORTA Design

Process CodeAORTA Kernel

Implementation

Formal SpecificationUser Requirements

Write
Functional

Code

Prove
Design
Correct

Write
Functional

Code

Verify
Code

Write Spec

Write Design

Offer Communciation Primitives

Assemble to Target

Time CodeCustomize Kernel Generate C CodeTime Kernel

Compile to Target

Write DesignSimulate

Figure 2: AORTA within a real-time design methodology

AcknowledgementsThe authors would like to thank the University ofNorthumbria at Newcastle and Northern IT Researchfor their �nancial support, and the anonymous review-ers for their comments.References[1] J S Ostro�. Formal methods for the speci�ca-tion and design of real-time safety critical sys-tems. Journal of Systems and Software, 18(1):33{60, April 1992.[2] A Burns. Scheduling hard real-time systems : areview. Software Engineering Journal, 6(3):116{128, May 1991.[3] I Tvrdy. From LOTOS to OCCAM. In SecondInternational Conference on Software Engineeringfor Real Time Systems, pages 175{179. The Com-puting and Control Division of the Institution ofElectrical Engineers, September 1989.[4] A Valenzano, R Sisto, and L Ciminiera. Rapid pro-totyping of protocols from LOTOS speci�cations.Software | Practice and Experience, 23(1):31{54,January 1993.

[5] H Kopetz, A Damm,C Koza, MMulazzani, W Sw-abl, C Senft, and R Zainlinger. Distributed fault-tolerant real-time systems: The MARS approach.IEEE Micro, pages 25{40, February 1989.[6] S Bradley, W Henderson, D Kendall, and A Rob-son. An Application Oriented Real-Time Algebra.Technical Report NPC-TRS-93-3, Department ofComputing, University of Northumbria, UK, 1993.[7] S Bradley, W Henderson, D Kendall, and A Rob-son. A formally based hard real-time kernel. Tech-nical Report NPC-TRS-94-3, Department of Com-puting, University of Northumbria, UK, 1994.[8] R Alur, C Courcoubetis, and D Dill. Model-checking for real-time systems. In IEEE Fifth An-nual Symposium On Logic In Computer Science,pages 414{425, June 1990.[9] J S Ostro�. A veri�er for real-time properties.Real-Time Systems, 4(1):5{36, March 1992.[10] C Y Park and A C Shaw. Experiments with aprogram timing tool based on source-level timingschema. Computer, pages 48{57, May 1991.[11] B Potter, J Sinclair, and D Till. An Introductionto formal speci�cation and Z. Prentice-Hall, 1991.[12] C B Jones. Systematic software development us-ing VDM. Prentice-Hall, 1986.

