Practical Formal Development of Real-Time Systems

S. P. Bradley

W. D. Henderson

D. Kendall A. P. Robson

Department of Computing
University of Northumbria at Newcastle

Newcastle-upon-Tyne, NE1 8ST, UK

Abstract

The complexities of real-time systems are such that
it 15 often thought necessary to give a formal justi-
fication of their correctness, especially if they are to
be used wn a safety-critical environment. In this pa-
per we describe our work on a formally based design
method for real-time systems which allows the timing
aspects of a concurrent system to be mathematically
described and verified, as well as semi-automatically
implemented. Qur design language, AORTA, is a
timed process algebra, with features to ensure that all
destgns can be implemented. A predictable real-time
kernel is also described, which is used in the construc-
tion of a system from an AORTA design, and which
allows the timing of the implementation to be verified.

1 Background and motivation

There is much existing work on methods for real-
time systems, both on the theoretical aspects of veri-
fying the correctness of a real-time system [1], and on
the practical ways of guaranteeing performance via a
real-time kernel [2], but little that links the two. If
practical formal techniques are to be found for real-
time systems, then both high-level, more theoretical
aspects must be considered as well implementation
performance issues such as scheduling. There is some
work which attempts to link the higher and the lower
level, such as the implementation of formal models by
compilation of (untimed) LOTOS [3, 4], or the over-
all system design methodology of the (non-formally
based) MARS project [5], but we are not aware of any
work that addresses the practical design, implemen-
tation, and formal verification of a time-critical sys-
tem. In response to this apparent lack, we have devel-
oped a formal design language based on process alge-
bra called AORTA (Application Oriented Real-Time
Algebra) [6], with the specific aim of providing a com-

plete route from a (timed) formal specification to a
verified implementation.

The first goal of our project has been to provide a
means of producing a real-time system from its formal
expression in AORTA as most of the existing theoreti-
cal work covers the verification of a design with respect
to a formal specification. Work on real-time kernels
has made advances in ensuring that processes will get
through their work as quickly as possible. Sometimes,
however, this is at the expense of making the schedul-
ing arrangements too complex to be able easily to
provide reliable predictions about the performance of
an interacting set of processes. Whilst priority-based
scheduling algorithms may be provably optimal, it is
not always optimality that is important — in particu-
lar, predictability of time-critical systems can be cru-
cial. On this basis we have reverted to a very simple
yet predictable fixed time-slice round-robin scheduler,
so that timing is easier to predict, as the performance
of each process does not depend on the performance of
others except at explicit communication or synchroni-
sation points. The efficiency sacrificed in using such
a scheduling mechanism is balanced with the reduced
cost of developing a verified system; as hardware costs
are relatively low compared with development costs,
we feel that this tradeoff is often justified.

The kernel also provides sound, safe and predictable
communication primitives, based on Ada style syn-
chronous communication, which correspond directly
to the communication constructs in the AORTA de-
sign language. Together with a timeout facility, this
provides a direct route to implementation, by C code
generation from the AORTA design. Although the
AORTA design only deals with the timing and inter-
communication of the processes, the sequential code
within a process is included in a manageable way,
and the timing of non-generated code 1s verified by
a combination of bounds on processing time of the
code and the processing distribution figures available

for the kernel in [7].

2 The AORTA design language

Timed process algebras are widely known, but are
usually used for modelling or specifying real-time sys-
tems, rather than designing them. Our language,
whilst having some features in common with timed
(and untimed) process algebras, is distinguished by
its implementability. There are two main points of dif-
ference, the first being that the number of processes
within a system is constant throughout the lifetime
of the system, making processor allocation, and hence
computation times, easier to verify. Secondly, all tim-
ings in the design can be expressed as upper and lower
bounds, rather than exact figures, as in reality bounds
can usually be given, where precise figures may not ex-
ist. It is this representation of time bounds which is
most problematic in existing timed process algebras.

In order to keep the model of the timing tractable,
data within a system is not represented in AORTA,
with all computation being represented only by the
(bounds on the) amount of time required to complete
1t. Within each process communication is represented
by the name of the gate on which communication is
to take place, and bounds are placed on the amount
of time between both sides of the communication be-
ing ready, to the communication actually taking place.
Processes are written in a simple equational format,
similar to that used in many other process algebras.
A process written

Convert = in.[100,150]out.Convert

will wait for communication on its in gate, before do-
ing some computation which lasts for between 100 and
150 milliseconds (any time units, discrete or dense may
be chosen for a design — [0.1,0.15] would be an equally
valid expression) and offering communication on its
out gate. Once this second communication has taken
place the process will start again waiting for an in
communication. This is how a process which accepted
temperature data and converted it to a different for-
mat would be expressed. The bounds on communi-
cation times are given by a separate function which
takes a gate identifier and returns a time interval.

A choice construct is provided, similar to the + of
CCS and the select statement of Ada, which allows
several possible communications to be offered. The
future behaviour of the process depends on which is
completed first. Timeouts may also be defined, so
that if none of the communication choices offered are
taken up within a certain time, then control passes to
another branch. Again, exact figures are not usually
available for occurrences of timeouts, so bounds are

used instead. If our Convert process is to accept input
or allow its conversion mode to be changed, this would
be written

Convert = in.[100,150]out.Convert
+

mode. [300,400]Convert

where the reconfiguration procedure takes between
300 and 400 milliseconds. If the data offered on the
out gates is also to be kept up to date then it may
need to be refreshed every 1.5 seconds or so, which is
achieved by adding a timeout to the out communica-
tion:

Convert = in.[100,150]
(out.Convert)[1450,1550>Convert
+
mode. [300,400]Convert

where 1450 and 1550 are estimates on the bounds
which can be placed on a timeout of about 1500 mil-
liseconds.

The last construct which can be used in the defini-
tion of individual processes 1s a data-dependent choice,
used where the flow of control of the process depends
on the value of some data in the system. Data is not
modelled in AORTA, so this 1s essentially a nondeter-
ministic choice as far as the process algebra is con-
cerned. The choice between two possible behaviours
is represented by ++, so that if our Convert process is
to give a warning if the value that 1t finds is outside a
certain range, this would be written

Convert = in.(Convert2 ++ warning.Convert2)
+
mode. [300,400]Convert
Convert2 = [100,150]
(out.Convert)[1450,1550>Convert

A system usually consists of the parallel composi-
tion of two or more processes; this is represented using
the traditional process algebra bar |, with a connec-
tion set showing pairs of gates which may communi-
cate. This explicit connection of gates allows for a
more efficient implementation, and simplifies verifica-
tion. The connection set is represented by pairs of gate
identifiers written in angle brackets after the processes
of the system. A plant control system incorporating
the Convert process with a Control process and a
Datalogger process, is written as follows:

Tempsys =
(Control | Convert | Datalogger)
<(Control.changem,Convert.mode),

(Control.temphigh,Convert.warning),

(Convert.out,Datalogger.getdata),

connections between Control and Datalogger
>

The ordering of the pairs of gates is not important,
and not all gates of the processes need be connected:
those left free will have to communicate with the envi-
ronment, like the in gate of our Convert process. Fig-
ure 1 gives a diagrammatic representation of Tempsys.

Most features of typical small embedded systems
can be designed using this language: resource con-
tention can be handled with the choice construct, and
polling loops with a timeout. As well as allowing im-
plementation, AORTA has a formal semantics given
in terms of a timed transition system, which allows
formal reasoning to be done about the design, and the
possible application of model-checking techniques such
as [8, 9]. Space does not allow us to go into the details
of the semantics here, but see [6] for more details —
it remains now to show how AORTA designs can be
implemented in practice.

3 Implementation and the kernel

As the main point of the AORTA design language is
its implementability, we outline here the kernel which
we have written which allows AORTA designs to be
verifiably implemented. We mentioned earlier that we
have adopted a very simple approach to scheduling
in order to be able easily to verify the performance
of each of the processes. This is achieved by using a
fixed time-slice round robin scheduler, where a fixed
schedule of processes is executed on the kernel at a
fixed frequency, so that each process has a guaranteed
amount of processing time per unit real time, unaf-
fected by the performance of the other processes. For a
given amount of processing time required, bounds can
be put on the amount of real time required, so that
the timing of a piece of sequential computation can
easily be verified given the processing requirements of
that computation. Bounds on the computation time
required for a piece of code can be found using tech-
niques such as described in [10].

At each scheduling point, the kernel checks through
the list of connected gates to see if there is a pair
which is ready; if there is then it effects the commu-
nication, signalling to the processes involved that it
has taken place, and disables communication on gates
which were in choice with the successful gates. It then
looks for possible external communications (on gates
that are left unconnected) before looking through the

list of timeouts to see if any have exceeded their time
limit. By checking for communications and timeouts
at every reschedule, bounds can be placed on the time
for a communication to take place once enabled, and
for a timeout to come into effect.

Communication primitives are offered by the kernel
as C functions which are called from the processes.
The calls to the kernel are generated automatically
from the design, along with the parameters of the ker-
nel, such as the number of processes, and the gates
which are to be connected. Details such as the code
to be executed as part of a computation delay, the
data to be passed in the communication, and the con-
ditions for a data-dependent choice are attached as
annotations to the design. They have no interpreta-
tion in the formal semantics, where they are viewed as
comments, but they allow the code to be included in
the correct place without having to edit the code gen-
erated from the design. Putting the kernel together
with the generated code allows an implementation to
be generated automatically from an annotated design.
The pieces of sequential code still have to be hand con-
structed, but once written, their timing, and hence the
timing of the whole system can be verified.

4 Current and future work

The work on providing a route from design to im-
plementation is complete, so that a system can be built
automatically from its design. Although all of the veri-
fication methods are manually available, they have not
vet been integrated into a single tool. The verification
of an AORTA design will be addressed soon, but there
is currently a simulator tool, which allows a design (in-
cluding its timing) to be tested out by a user as the
first step in a verification process. It is hoped that
existing formal verification methods (such as [8, 9])
may be applicable. Figure 2 shows how the work fits
together: arrows going downward represent implemen-
tation, arrows upwards verification; solid arrows indi-
cate currently available routes, automated where ap-
propriate, and the dashed arrows represent possible
future pieces of work. Other implementation routes
may be the subject of future work, such as distributed
implementations or kernels based on other scheduling
mechanisms. One particularly interesting piece of fu-
ture work would be the integration of existing formal
methods for developing sequential code (such as Z [11]
or VDM [12]) with AORTA, so that the timing of a
system and its functional correctness could be verified
in a unified way.

Control

changem

temphigh

in

mode

Convert

warning

out

getdata

Datal ogger

User Requirements

Simulate Write Design i i .
I'd
AR

Customize Kernel Time Kernel Generate C Code

{ AORTA Design

~

~

Functional

~

Write

Code

Write
Functional
Code

'

AORTA Kernel J Offer Communciation Primitives (Proce$ Code

Assemble to Target ﬁ arget

| mplementation

Figure 2: AORTA within a real-time design methodology

Acknowledgements

The authors would like to thank the University of
Northumbria at Newcastle and Northern I'T Research
for their financial support, and the anonymous review-
ers for their comments.

References

[1] T S Ostroff. Formal methods for the specifica-
tion and design of real-time safety critical sys-
tems. Journal of Systems and Software, 18(1):33—
60, April 1992.

[2] A Burns. Scheduling hard real-time systems : a
review. Software Engineering Journal, 6(3):116—
128, May 1991.

[3] T Tvrdy. From LOTOS to OCCAM. In Second
International Conference on Software Engineering
for Real Time Systems, pages 175-179. The Com-
puting and Control Division of the Institution of
Electrical Engineers, September 1989.

[4] A Valenzano, R Sisto, and L. Ciminiera. Rapid pro-
totyping of protocols from LOTOS specifications.
Software — Practice and Frperience, 23(1):31-54,
January 1993.

[5] H Kopetz, A Damm, C Koza, M Mulazzani, W Sw-
abl, C Senft, and R Zainlinger. Distributed fault-
tolerant real-time systems: The MARS approach.
IEEE Micro, pages 25-40, February 1989.

[6] S Bradley, W Henderson, D Kendall, and A Rob-
son. An Application Oriented Real-Time Algebra.
Technical Report NPC-TRS-93-3, Department of
Computing, University of Northumbria, UK, 1993.

[7] S Bradley, W Henderson, D Kendall, and A Rob-
son. A formally based hard real-time kernel. Tech-
nical Report NPC-TRS-94-3, Department of Com-
puting, University of Northumbria, UK, 1994.

[8] R Alur, C Courcoubetis, and D Dill. Model-
checking for real-time systems. In IEEE Fifth An-
nual Symposium On Logic In Computer Science,
pages 414-425, June 1990.

[9] T S Ostroff. A verifier for real-time properties.
Real-Time Systems, 4(1):5-36, March 1992.

[10] C Y Park and A C Shaw. Experiments with a
program timing tool based on source-level timing
schema. Computer, pages 48-57, May 1991.

[11] B Potter, J Sinclair, and D Till. An Introduction
to formal specification and Z. Prentice-Hall, 1991.

[12] C B Jones. Systematic software development us-
g VDM. Prentice-Hall, 1986.

