
A Formally Based Hard Real-Time KernelSteven Bradley William Henderson David KendallAdrian Robson �AbstractIn order to demonstrably satisfy hard real-time deadlines, a systemmust be predictable, and in particular the kernel must be predictable. Inthis paper we present and analyse a predictable kernel related to AORTA,a formal design language for hard real-time systems. The features ofthe kernel allow AORTA designs to be veri�ably and semi-automaticallyimplemented, and enable veri�ed guarantees to be given about the real-time behaviour of the system.Keywords: real-time, formal methods, performance prediction, pro-cess algebra.IntroductionThe purpose of a hard real-time kernel is to allow concurrent cooperating pro-cesses to achieve their speci�ed performance. As the overall aim of a hard real-time kernel is to guarantee performance of the whole system, a simple schedulingmechanism which trades o� some e�ciency for predictability can be very use-ful; where hardware costs are relatively small compared with development costsand where guaranteed time performance is critical, such a kernel is of interest.A commoner approach to real-time kernel design is to have a system of pri-orities (possibly dynamically de�ned) which ensures that `important' processescan claim processing time whenever they want it, at the expense of those oflower priority. Unfortunately, high priority processes can often depend on lowerpriority processes, for instance if they share a critical section of code which mayonly be accessed by one process at a time; this can lead to a process e�ectivelylocking itself out (an extreme consequence of `priority inversion'). Dynamic as-signment of priorities can overcome these problems [1], but gives a kernel whoseperformance is di�cult to predict and analyse in general, and hence di�cult toverify.As well as managing processor allocation, a kernel is expected to deal withinter-process communication and resource management (typically mutual exclu-sion), and handle these in a way that is demonstrably safe. Once the communi-cations and scheduling arrangements are handled in a predictable way it is thenpossible to start to predict the behaviour of the whole system in order to showthat it satis�es its speci�cation. The complexities of communicating concurrentsystems are such that even with a detailed knowledge of the behaviour of allof the individual processes it can be very di�cult to form an accurate picture�The authors are with the Department of Computing, University of Northumbria at New-castle, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK1



Generated
Code

Kernel
Customisation

Other 
User
Code

KernelAORTA designSpecificationFigure 1: Implementation of an AORTA design using the kernelof the behaviour of a whole system. Formal methods can be used in such sit-uations, to provide assurance that the picture truly represents the system andthat the speci�cation is matched in all instances [2, 3].If justi�cation is needed for verifying safety-critical systems then we don'thave to look very far to �nd systems whose time performance is crucial: 
y-by-wire systems, nuclear and chemical plant controllers, and life support systemsall have vital real-time characteristics. Even systems which are not apparentlytime-critical, but which do have concurrency, can develop faults because of tim-ing. The Therac-25 medical accelerator had, among other problems, timingconditions which caused apparently transient faults, resulting in massive over-doses of radiation [4].In this paper we present a hard real-time kernel which o�ers predictablescheduling along with safe communication primitives. It is closely related toAORTA [5], a formal language for hard real-time systems, used to design thetiming and communication aspects of a concurrent system, whose language con-structs are implemented using the kernel. Having a formal de�nition of thesystem via AORTA allows its behaviour to be formally analysed and veri�edwith respect to a formal speci�cation. Through AORTA, a link can be madebetween the high level reasoning of the theoreticians and the implementationconsiderations of kernel designers. This link is, unfortunately, not usually madein existing work.As well as a kernel for AORTA, prototype tools also exist for automaticallycustomising the kernel for an AORTA design, and for generating the frameworkfor the process code (written in C), as shown in �gure 1. C was chosen for purelypragmatic reasons, such as availability of timing tools for cross compilers [6],but in principle any language which is amenable to static timing analysis couldbe used. A simulator tool has also been written, which allows a designer to tryout a design before working out the detail of the implementation.Before considering the kernel in detail, we give an overview of AORTA, togive a speci�cation of the services that must be o�ered by the kernel. The designand implementation of a kernel which provides such services are described inthe following section, after which the performance of the kernel is analysed. Inorder to indicate how the kernel can be used with AORTA, the next sectiondescribes a possible design method before the �nal, concluding section.2



An Overview of AORTAAORTA (Application Oriented Real-Time Algebra) [5] is a formal design lan-guage speci�cally for concurrent hard real-time systems, related to timed ver-sions of process algebras such as CCS [7], LOTOS [8] and CSP [9]. AORTAdeals with the time performance and communication aspects of a system: allsequential computation or other time-consuming activity is represented by theamount of time taken to complete it, making the resulting mathematical modelof the system tractable. The few constructs of AORTA are expressive enoughto design real systems, and yet restrictive enough to ensure that the systemis implementable | it is on the second count that existing timed algebras falldown.In this section we introduce AORTA by using a semi-realistic example, basedon a chemical plant controller. The controller has to monitor and log tempera-tures within the reaction vessel, and respond to dangerously high temperaturesby sounding an alarm. Two rates of sampling must be provided, to be selectedby the plant operator, each of which has its own output format for the loggingfunction. In order to ensure safety of the plant, the temperature must be sam-pled at least every two seconds, and if a reading lies outside the safety thresholdthe alarm must be sounded. A similar system is described in [10].An important feature of AORTA is that timing information about a processdoes not have to be exact, but may be expressed as upper and lower bounds onthe time (execution time or communication time). This nondeterminism arisesin all multitasking systems, from the scheduler, the communicationmechanisms,and sections of sequential code, but it is not addressed in other formal meth-ods which deal with time. The number of constructs for building processes inAORTA is relatively small, and the number of processes within a system is �xed,i.e. there can be no dynamic process creation, allowing straightforward timinganalysis, and guaranteeing implementability. Each process has a �xed numberof communication gates, each of which may connected either externally or in-ternally. All communication between processes must be between linked pairs ofgates (as in �gure 2), and is synchronous. When a process wishes to communi-cate on a certain gate, it has to wait until the process at the other end of thelink is also ready before the communication takes place, and the process canproceed. This so-called blocking communication mechanism is closely related tothat of occam [11], and is similar to the Ada rendezvous [12]. One solution tothe plant control problem just mentioned involves two processes, Convert andDatalogger, with two internal connections and a total of �ve external connec-tions, as shown in �gure 2.Individual processes are de�ned using four basic language constructs: com-putation delay, communication (and its extensions of choice and timeout), re-cursion, and data dependent choice. A summary of the syntax for sequentialprocesses is presented in table 1. Firstly, all time-consuming computation isrepresented only by the amount of time it takes: no attempt is made to modelthe data in the system at this stage of the design, so all details of what happensduring this time are omitted. The notation used for this is a pair of squarebrackets enclosing the time taken, where the time can be given as an exact �g-ure or two numbers separated by a comma, giving the lower and upper boundson the time ([t1,t2]S). The second construct is for blocking communication asdescribed earlier, and is written by simply putting the name of the gate followedby a full stop before the subsequent behaviour de�nition (a.S). Recursion (loop-3



Convert Datalogger
changespeed

out getdata

speed

warning in mode download senddataFigure 2: Connectivity of a System Containing Convertcomputation delay [t]Sbounded computation delay [t1,t2]Scommunication a.Schoice S1 + S2timeout (S1 + ... + Sn)[t>Sbounded timeout (S1 + ... + Sn)[t1,t2>Srecursion equational de�nitiondata dependent choice S1 ++ S2Table 1: Summary of AORTA concrete syntaxing) is the third construct and can be written by using an equational de�nitionof a process and subsequent naming of that process. These three constructs areused in this �rst attempt at the Convert process of our plant controller:Convert = in.[0.001,0.004]out.ConvertHere, Convert reads its data from gate in, and then does the conversion, whichtakes between 0.001 and 0.004 seconds. Once the conversion is complete, thedata is output on gate out, and the process loops back to input new data.The communication construct (.) has two extensions available: a choicebetween o�ered gates, and timeout continuation if no communication takes placewithin a certain time. Similar features are o�ered by Ada and occam, but inAORTA allowances are made for the time taken for communication or timeoutto occur. Choices between gates are written using a + in between the branchesof the choice, and the 
ow of control of the process depends on which gate ismatched �rst. To allow our conversion process not only to wait for input, butalso have the conversion mode changed by the user, a mode gate is o�ered inchoice with in. If mode is matched �rst then a signal is sent to the Dataloggerprocess to tell it to change sampling speed, and a piece of recon�guration code(recalculation of a look-up table) is executed, which takes between 0.3 and 0.4seconds. Our Convert process would then look like this:Convert = in.[0.001,0.004]out.Convert+mode.changespeed.[0.3,0.4]Convert4



As only one branch may be chosen, and the o�er of communication on otherbranches is lost once one is taken up, choice can be used to implement mutualexclusion for access control to a resource of any kind, and in the case of theConvert process, it prevents a mode change during a conversion.Timeouts can be added to a communication or choice between communica-tions, so that if no communication events occur within a certain period of timethen control is passed to another branch. As with delays, if timeouts cannot beguaranteed to take place at an exact point in time AORTA allows bounds to beplaced on the time taken to time out: timeout will de�nitely not have occurredbefore the earliest time, and will de�nitely have taken place by the latest timeif no communication has been possible. To write this down, the communica-tion(s) over which the timeout is taking place is/are bracketed and followedby the bounds (or an exact �gure if available) inside [ .. >. The behaviourwhich is to take place in case of a timeout is given after the >. For example,to ensure that the Convert process is not inadvertently blocked by waiting forcommunication with Datalogger, a timeout of about 1.5 seconds is added tothe out and changespeed communications:Convert = in.[0.001,0.004](out.Convert)[1.5,1.505>Convert+mode.(changespeed.[0.3,0.4]Convert)[1.5,1.505>ConvertNote the use of brackets to indicate which communication the timeout refersto. Used in this way, timeouts can be used to implement watchdogs or pollingloops.Choice by using + allows the 
ow of control of a process to be changeddepending on which of several communications takes place. Sometimes choicesare not made on the basis of where the process has communicated, but ratheron the values that are passed during communication, or on values computedby the process. AORTA views all such branches as data dependent, and asit has no information about the data of the system, the choice appears to benondeterministic. Such choices are written using the fourth and �nal construct,called data dependent choice. To de�ne branches which may depend on data,a ++ symbol is placed in between the possible behaviours. In order to send awarning alarm for dangerously high readings, our Convert process has to use adata dependent choice, which would be based on the value read from gate in.The �nal version of Convert then looks like this:Convert = in.(Convert2 ++ warning.Convert2)+mode.(changespeed.[0.3,0.4]Convert)[1.5,1.505>ConvertConvert2 = [0.001,0.004](out.Convert)[1.5,1.505>ConvertNotice the use of Convert2 within the de�nition, which is de�ned along withConvert. These de�nitions are mutually recursive (they refer back and forth toeach other), and are used for ease of reading and expression of a single sequentialprocess. As many simultaneous de�nitions as required may be given, with 
owof control passing between any of them by recursion.Having introduced our language constructs in the development of the Convertprocess, we now use some of them in the de�nition of the Datalogger process.5



This process periodically requests data from the in gate of Convert, and maybe requested to change the speed of sampling via the changespeed gate. Itmay also get requests for the data to be downloaded to an external machine.The basic process samples every second (the speed of sampling depends on theDatalogger process, as Convert will always o�er data as soon as it is ready),and in between samples waits for a speed change command, which changes thesampling period to 0.25 seconds:Datalogger = getdata.[0.01,0.015](speed.Datalogger2)[1.00,1.005>DataloggerDatalogger2 = getdata.[0.001,0.015](speed.Datalogger)[0.25,0.255>Datalogger2In order to add a download facility, a download communication is o�ered inchoice with speed; if this is requested, then some formatting computation isdone (for between 0.5 and 1.0 seconds) before the data is sent out on senddata.This �nal version of Datalogger is de�ned as follows:Datalogger = getdata.[0.01,0.015](speed.Datalogger2+download.[0.5,1.0]senddata.Datalogger)[1.00,1.005>DataloggerDatalogger2 = getdata.[0.001,0.015](speed.Datalogger+download.[0.5,1.0]senddata.Datalogger2)[0.25,0.255>Datalogger2The four constructs (computation delay, communication, recursion and non-deterministic choice) are used to de�ne individual processes, which can thenbe connected together into a system by using the parallel operator, written|. To allow inter-process communication, pairs of gates may be connected byspecifying a connection set in angle brackets after the parallel processes havebeen listed. Externally connected gates are also listed, and the delays for allcommunications (which will depend on the scheduling period) are also speci�ed.The system de�nition of our plant controller is then written(Convert | Datalogger)<(Convert.changespeed,Datalogger.speed:0.001,0.003),(Convert.out,Datalogger.getdata:0.001,0.003),(Convert.in,EXTERNAL:0.001,0.003),(Convert.warning,EXTERNAL:0.001,0.003),(Convert.mode,EXTERNAL:0.001,0.003),(Datalogger.download,EXTERNAL:0.001,0.003),(Datalogger.senddata,EXTERNAL:0.5,10.0)>which is the textual representation of �gure 2. Notice that all communicationdelays are the same size, except for senddata, as this involves the transfer of asubstantial amount of data. 6



Once a system has been written in this way its behaviour has been preciselyde�ned. AORTA has a formalmathematical de�nition and semantics, and henceallows mathematical reasoning about the timed behaviour of systems, but wewill not touch on these here for lack of space. The interested reader shouldsee [5].The Kernel Design and ImplementationMany kernels could be used to implement AORTA designs, but the kernel thatwe present is designed so that it is relatively easy to produce the �gures for min-imum/maximum execution and communication times. The scheduling mecha-nism is just about the simplest available, with the processes being preemptivelyscheduled on a �xed time slice in a �xed order (i.e. no priorities). Inter-processcommunication is managed by the kernel, and implemented using shared mem-ory. Some round-robin schedulers rely on every process completing its requiredactivity within its allotted slice [13], but we make the scheduling transparentto the process, so that there is no such notion of required activity within aslice, and assume all activity is preemptible. In other words, rather than havingtasks executing periodically/synchronously, our processes do not have any �xedperiod, and achieve all necessary synchronisation via timeouts and communica-tion. If a process has to be excluded from accessing some resource at the sametime as another process, this is achieved by using the communication primi-tives, which makes for a safer and more comprehensible design, and one whichis much more easily changed. The important point about having a �xed timeslice is that the performance of each process is independent of the behaviour ofother processes, except where made explicit at a communication point, so thatthe processor is e�ectively split up in a number of smaller processors, one foreach process. As well as making performance prediction for each process muchsimpler, this transparency means that decisions about whether a distributed ormultitasking implementation is more appropriate can be deferred until a moreappropriate point. Indeed, AORTA processes need not be software processes,but could equally well be built in hardware, allowing formal analysis to be doneon hardware/software codesign of a system.The more interesting part of the kernel is the communication mechanism.Each process may be ready to communicate on any number of gates and mayalso have a timeout in e�ect. We require that when a pair of gates in the givenconnection set are both ready to communicate they must do so within a certainamount of time, and that if any other gates are o�ered in choice, they must bedisabled so that only one gate in the choice may communicate. As any processmay be descheduled at any point, careful attention has to be paid to keepinga consistent and complete set of information available to the kernel and theprocesses, to ensure that the mechanism is sound.To describe the algorithm used to implement communication, we �rst of allhave to introduce the various 
ags and pointers associated with each processand with each gate of the system. Let us assume that we have an indexingset I for the processes, and a set J for the gates, and that i and j range overI and J respectively. For each gate j there are two 
ags: gatej :ready andgatej :has comm, which correspond to the readiness of the gate to communicate(i.e. the process to which it belongs has o�ered it by itself or in a choice), andthe successful completion of communication on that gate. There is also an entrychoice addrj which contains a pointer to a list of the gates in choice with j at7



variable set resetname what when what whenset upi process i wishes to comm kernel done set upchoice listi process i before set upi N/A N/Agatej :ready kernel in set up kernel after commgatej :has comm kernel after comm process after noting commTable 2: Access to Communication Variables in the Kernelthe current time, and a choice list choice listi for each process. Finally, eachprocess has a 
ag set upi which is used to indicate when that process wishesto o�er a communication. Figure 3 shows how these 
ags are changed when asimple choice between two gates is o�ered.There are two parts to the algorithm for communication, which e�ectivelyrun concurrently: the code executed by the kernel on every reschedule, andthe code executed by a process when it wishes to o�er a communication. Inorder for a process to o�er a communication (with or without choice), it signalsto the kernel that it wishes to communicate, and on which gates it wants tocommunicate. This is done by storing the gate identi�ers in choice listi (forprocess i), and then setting the set upi 
ag. This corresponds to �gure 3a.During its reschedule, the kernel checks the set upi 
ag for every process, andif it is set, it goes through the corresponding choice list, setting the gatej :ready
ag for every gate it �nds there, as a signal to itself that gate j wishes tocommunicate, as illustrated by �gure 3b. After having checked for setups, thekernel looks through the connection set (i.e. the set of pairs of gates that areconnected in the design). If it �nds a pair in which both gates are ready tocommunicate (have their gatej :ready 
ags set), it resets all of the gatej :ready
ags in the corresponding choice lists (as pointed to by gatej :choice addr), andsets the gatej :has comm 
ag for each of the communicating gates, as illustratedby �gure 3c. The setting of the gatej :has comm 
ags is the signal back tothe processes which initiated the communication that it has been successfullycompleted, and where there is a choice, which of the gates was successful, andit resets the gatej :has comm 
ag before continuing. Table 2 summarises howthe various variables are accessed, and under what conditions they are set andreset, while �gures 4 and 5 give the pseudo-code forms of the algorithms usedby the communicating process and the kernel respectively. For the process part,the pseudo-code is presented as a function, which takes as its arguments theprocess identi�er and a set (or list) of gates, and returns the identi�er of thegate on which communication takes place. In the case of the kernel, the code isexecuted every time a deschedule takes place.Figure 6 gives an example of how the kernel works, by showing the order of
ags being set and reset for a communication between the Datalogger process,which is o�ering a choice between download and speed, and the Convert pro-cess, which is o�ering the gate changespeed. As Convert.changespeed andDatalogger.speed and linked in the connection set, they trigger a communi-cation when both are ready, as indicated on the diagram.The algorithms as presented in �gures 4 and 5 do not describe the way thattimeouts and value-passing (as opposed to pure synchronisation) are handled,but they require only a little modi�cation to deal with these features. Timeoutscan be considered as choices with an extra possible branch, where instead of acommunication event triggering the branch, a timeout event is used instead. By8



set_up_i

choice_list_i

ready_1 has_comm_1 choice_addr_1

ready_2 has_comm_2 choice_addr_2

set_up_i

choice_list_i

ready_2 has_comm_2 choice_addr_2

ready_1 has_comm_1 choice_addr_1

set_up_i

ready_1 has_comm_1 choice_addr_1

ready_2 has_comm_2 choice_addr_2

choice_list_i

a)

b)

c) Figure 3: An Illustration of the Communication Flags9



function communicate(i,choices)for all j in choices docopy j into choice listiend doset upi := truegot comm := falsedo while (not has comm)for all j in choice listi doif gate:has commj = true thenjcomm := jgate:has commj := falsegot comm := trueend ifend doend doreturn jcomm Figure 4: Communication Function for Process ifor i = 1 to number of processes doif set upi = true thenset upi := falsefor all j in choice listi dogatej :ready := trueend doend ifend dofor all (j1; j2) in connection set (* i.e./ j1 and j2 are connected *) doif gatej1 :ready = true and gatej2 :ready = true thenfor all j in list pointed to by choice addressj1 dogatej :ready := falseend dofor all j in list pointed to by choice addressj2 dogatej :ready := falseend dogatej1 :has comm := truegatej2 :has comm := trueend ifend do Figure 5: The Kernel's Communication Test Algorithm10



K
er

ne
l

CPU task

set_up(Datalogger)

set_up(Convert)

D
at

al
og

ge
r

K
er

ne
l

C
on

ve
rt

K
er

ne
l

D
at

al
og

ge
r

C
on

ve
rt

gate(Datalogger.speed).ready

gate(Datalogger.download).ready

gate(Convert.changespeed).ready

gate(Convert.changespeed).has_comm

gate(Datalogger.speed).has_comm

gate(Datalogger.download).has_commFigure 6: Communication Between the Convert and Datalogger processes (tim-ings not to scale)including a timeout in the choice list, the relevant communications are disabledif timeout occurs, and the timeout is disabled if a communication event occurs.A timeout has associated with it a ready 
ag, a has comm 
ag, and the time atwhich it should occur. Instead of the kernel checking for a pair of gates to beready to communicate, it checks to see whether the occurrence time has beenpassed, and if it has, the choice list is reset and the has comm 
ag set, as forinternal communications.A value-passing mechanism is provided by associating with each gate storagefor a data-in value and a data-out value. The value passed could be the dataitself, or a reference to the data. When the kernel �nds a pair of gates ready tocommunicate, it copies the data-out of one process to the data-in of the otherand vice versa. As far as the calling routine for the process is concerned, anextra parameter is added to the communication function, which is a pointer toan array of values to be passed in. These values are copied to the relevant data-out slots before the set up 
ag is set, and after communication has occurredthe data-in from the gate which has communicated is copied into the relevantentry in the array of values. Note that data-passing is not modelled by AORTAas such, but this does not mean it cannot be used, only that it is not subjectto formal analysis within AORTA. The concluding section suggests that otherformal methods might be used in conjunction with AORTA to allow reasoningabout the data within a system.The actual implementation of the kernel and communication primitives (i.e.functions for communication and timeout) was written in 68000 assembly lan-guage, with the communication primitives callable from C. The code for thewhole kernel, including the communication primitives, only occupies about 3kilobytes of memory, with storage for the variables, 
ags, and stacks of a smallsystem with four processes and ten connections occupying another 3 kilobytes.11



Analysis of the Kernel PerformancePredictability is at a premium in a system which is to be formally veri�ed,so the scheduler described is very predictable, if not the most e�cient underlight loads. It should be noted, though, that it is under heavy processing loadsthat prediction becomes most important, and this scheduler has the pleasingproperty that the more processing required the more e�cient it becomes. Thebasis is a simple round-robin scheduler which switches processes at a �xed ratein time, regardless of their state of execution.There are three aspects of the timing behaviour of an implementation whichneed to be veri�ed: the amount of processing time each process gets, the timedelay in communication, and the bounds which can be placed on timeout oc-currence, which we shall deal with one at a time. Figure 7 gives a schedulingdiagram for a system with three processes, and introduces the variables we willuse in the analysis. The fundamental variable in the system is the interrupt orscheduling period, which we shall call p, and after each p time units the kernelis activated via a deschedule. Each time the kernel is activated (via an inter-rupt), a process is descheduled; once the kernel has �nished its activity the nextprocess is rescheduled. Depending on how much setting up and communicationthe kernel has to do, the amount of time it takes to perform all its tasks willvary, but can be bounded. We de�ne the upper and lower bounds on time spentin the kernel at each activation to be kl and ku respectively, (actual �gures forthis implementation are given later,) and the value for a particular activationof the kernel is written k. The point at which each process starts will dependon how long the scheduler took, but the time between deschedules is constant,and is represented by di for the process i. For a system with the processesbeing scheduled one after another, the di will be the same for all processes, butwhere one process occurs twice as frequently as others (e.g. 12131213: : : as in�gure 7) the di may be di�erent, although they will all be integer multiplesof p. We shall also refer to the process schedule time, which is the amount oftime a process remains scheduled. This depends on how long the kernel takesto execute immediately preceding the process being scheduled, but is boundedby [p� ku; p� kl].The easiest way to calculate the amount of real time required for a certainamount of processing time on a process is to consider the amount of time thatthe process will be in the middle of the processing, but not scheduled. Forthe minimum execution time we have to consider the best situation, which iswhere the processing starts at the beginning of a schedule. In this case, if theamount of processing time required is less than the time the process scheduletime, then the real time elapsed will be equal to the processing time required, asthe processor will have been solely devoted to that processing for its completeduration. If the processing time is greater than the process schedule time thenthe number of blocks of unscheduled time will be given by br=(p� kl)c, where riis the required processing time and bxc is the lower integer part of x. This comesfrom the assumption that this is the best case, so all kernel execution times willbe minimal (kl), giving a process schedule time of p� kl. Having calculated thenumber of blocks of unscheduled time we get the amount of unscheduled timeto be b rip�kl c � (di + kl � p))as each unscheduled block will last for (di� (p� kl)). This gives a total elapsed12



Process 1

Process 2

p

d2

Process 3

Kernel

kl<k<ku

Process
Schedule

Time

Deschedule
PointPoint

d1

(Re)ScheduleFigure 7: Scheduling diagram for three processestime of ri + b rip�kl c � (di � (p � kl))as the minimum for a required amount of processing ri. The worst case (whichis usually of most interest) is calculated similarly, but this time the computationstarts just as the process is being descheduled, and all of the kernel executiontimes are maximal, giving an elapsed execution time ofri + d rip�ku e � (di + ku � p)where dxe is the upper integer part of x.We measure the communication delay from the point at which the second(i.e later) process starts the communication procedure, to the point at whichthe process has noted the communication and carries on. This delay will bedi�erent for the two sides of a communication, but both sides will have thesame upper and lower bounds on the delay. There are three phases to thecommunication, each of which contributes to the overall delay. Firstly, someprocessing is required to set up the choice list before the set upi 
ag is set. Wede�ne the upper and lower bounds on this time to be pre comml and pre commurespectively. Secondly, once set upi has been set, there is a delay during whichthe kernel will set up the communication, complete it, and eventually reschedulethe process. The best case for this delay occurs when the process is descheduledjust as it completes its precommunication computation, giving a delay of di �(p� kl). In the worst case, the process only just fails to complete before beingdescheduled, giving a delay of 2�di�(p�ku). Thirdly there is a delay from theprocess next being scheduled, to the �nal completion of the processing requiredto reset the has commj 
ag and continue to the correct branch of the choice. Ifwe write the bounds on this time as post comml and post commu, the minimumoverall communication delay will bepre comml + (di � (p� kl)) + post comml13



and the maximumwill bepre commu + (2� di � (p� ku)) + post commuBoth of these �gures assume that the very small amount of post-communicationprocessing will be completed in one schedule block, and the maximum time canbe reduced todi + (p� kl)� (p� ku) + post commu = di + ku � kl + post commuif it can be shown that the pre-communication processing will be completedin one schedule block (as would probably be the case if the communicationimmediately followed from another).A timeout of time t, under a similar analysis, yields a minimum occurrencetime of pre comml + (b t+pdi c+ 1)� di � (p� kl)and a maximum ofpre commu + (d t+pdi e+ 1)� di � (p� ku)which can be reduced tod t+pdi e � di + ku � kl + post commuif the pre-communication processing can be guaranteed to complete within oneschedule block.In the above analyses, p, the scheduling period and di, the time betweenschedules for process i, may be adjusted by the implementor, but the �gures forthe kernel kl and ku are �xed by the kernel. The actual �gures depend on thenumber of processes in the system, the number of connections, and the maximumnumber of gates in any choice. The minimum time is of the approximate formkl = 1222+ 98� no processes + 88� no connectionsand the upper bound of the formku = 2222+268�no processes+88�no connections+212�max no in choicewhere the �gures given are for clock cycles on a 68000 micoprocessor. For atypical system with four processes and ten connections, running on a 68000,the bounds on kernel execution time are [2406; 5032] clock cycles, i.e. [0:3; 0:6]milliseconds for a clock speed of 8MHz.Using the Kernel in a Design MethodAs the main point of interest of the kernel is its amenability to formal analy-sis, we now look brie
y at how the kernel �ts into a scheme which provides averi�able route from speci�cation to implementation. Ultimately the aim is tobe able to write a formal speci�cation, and produce a veri�ed AORTA designwhich can then be implemented semi-automatically. This paper describes howan AORTA design can be implemented: the kernel is customised to the design(using the connection set), and a C program for each process, involving commu-nication, timeout and nondeterministic choice is generated automatically. The14



code for the computations concerned (as modelled by delays [ .. ]) is writtenseparately by the implementor, attached to the AORTA design as an annotation,and included with the communication code by the code generator. Informationabout data passing during communication, which lies outside the scope of theAORTA design, is included as an annotation to the design in the same way, andis used to set up and read a value array. Two routines are o�ered by the kernel,called communicate and communicatet, for communication and communicationwith timeout respectively, which are called by the code produced by the codegenerator when a choice or timeout is required. These are implementations ofthe algorithm presented in �gure 4. As regards veri�cation, the previous sectiongives an analysis which allows the bounds on the time for delays, communication,and timeout to be calculated; put together with bounds on the processing timerequired for each computation (using [6] for instance) this provides veri�cationtechniques for all of the timing aspects of the implementation.The route from an AORTA design to an implementation is complete, sothat a system can be built automatically from its design, and have its real-timeproperties veri�ed. There is currently a simulator tool, which allows a design(including its timing) to be explored by a user in an interactive way, whichwould be used as the �rst step in a veri�cation process. Figure 8 shows howthe work �ts together into an overall design method: arrows going downwardrepresent implementation, arrows upwards veri�cation; solid arrows indicatecurrently available routes, automated where appropriate, and the dashed arrowsrepresent possible future pieces of work.AORTA has been tried on some small examples, including the car cruisecontroller, but there is not yet enough information to evaluate fully whether ourassumptions about the tradeo� between e�ciency and predictability are sound.Other questions may be raised about the applicability of AORTA to safety-critical systems, given its use of C, interrupts, and concurrency. The choice ofC is not really an issue, as we mentioned earlier that any language which can beanalysed for timing could be used instead. Interrupts and concurrency, however,do raise more interesting points, as they are sometimes prohibited because ofthe unpredictable behaviour they can cause. We would argue that the aimof this work is to provide techniques for reliably, predictably and veri�ablyusing concurrency where appropriate | the use of �xed period interrupts is asecondary issue. It is our job to prove that concurrency using interrupts can beused safely within critical hard real-time systems, as long as a proper analysisis performed.ConclusionIn a hard real-time system it is not just good average performance that is re-quired, but guaranteed performance in all cases. By using a predictable sched-uler coupled with a formal analysis technique, we can provide sound guaranteesabout system performance, guarantees which refer to the actual implementationrather than to an abstract model of it. The techniques described here are as ap-plicable to distributed processing as to multitasking, so that is possible to deferdesign decisions about how many and what kind of processors may be requireduntil after the AORTA design is complete. In addition, there is no reason whya process need be restricted to software: an AORTA process could equally wellbe implemented in hardware, although this would require further investigation.15



AORTA Design

Process CodeAORTA Kernel

Implementation

Formal SpecificationUser Requirements

Write
Functional

Code

Prove
Design
Correct

Write
Functional

Code

Verify
Code

Write Spec

Write Design

Offer Communciation Primitives

Assemble to Target

Time CodeCustomize Kernel Generate C CodeTime Kernel

Compile to Target

Write DesignSimulate

Figure 8: AORTA within a real-time design methodologyReferring to �gure 8, we can see where future work will �t in to a designmethod. Techniques for formally verifying an AORTA design with respect toa formal speci�cation are currently being looked into, and it is hoped thatexisting work such as [14, 15] may be useful in providing automatic veri�cationprocedures. One particularly interesting piece of work would be the integrationof existing formal methods for developing sequential code (such as Z [16] orVDM [17]) with AORTA, so that the timing of a system and its functionalcorrectness could be veri�ed in a uni�ed way, giving a complete veri�cationtechnique for hard real-time systems.AcknowledgementsThe authors would like to thank the University of Northumbria at Newcastle andNorthern IT Research for their �nancial support, and acknowledge the helpfulcomments of Mike Bradley and the anonymous referees on earlier versions ofthe paper.References[1] A Burns. Scheduling hard real-time systems : a review. Software Engi-neering Journal, 6(3):116{128, May 1991.[2] G Bruns and S Anderson. A case study in the analysis of saftey require-ments. In H H Frey, editor, IFAC symposium on safety of computer controlsystems (SAFECOMP '92), pages 1{6, 1992.16



[3] M Thomas. The industrial use of formal methods. Microprocessors andMicrosystems, 17(1):31{36, 1993.[4] N G Leveson and C S Turner. An investigation of the Therac-25 accidents.IEEE Computer, 26(7):18{41, July 1993.[5] S Bradley, W Henderson, D Kendall, and A Robson. Designing and im-plementing correct real-time systems. In W-P de Roever, editor, FormalTechniques for Real-Time and Fault-Tolerant Systems '94 (FTRTFT '94)(To appear). Springer-Verlag, 1994.[6] C Y Park and A C Shaw. Experiments with a program timing tool basedon source-level timing schema. IEEE Computer, 24(5):48{57, May 1991.[7] R Milner. Communication and Concurrency. Prentice-Hall, 1989.[8] International Standards Organisation. Informations processing systems -Open Systems Interconnection - LOTOS - A formal description techniquebased on the temporal ordering of observational behaviour, volume ISO 8807.ISO, 1989-02-15 edition, 1989.[9] C A R Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[10] S Bradley, W Henderson, D Kendall, and A Robson. Practical formaldevelopment of real-time systems. In 11th IEEE Workshop on Real-TimeOperating Systems and Software, RTOSS '94, Seattle, pages 44{48, May1994.[11] G Jones. Programming in occam. Prentice Hall, 1987.[12] Department of Defense. Reference manual for the Ada programming lan-guage. springer-Verlag, 1983.[13] C Douglass Locke. Software architecture for hard real-time applications:Cyclic executives vs. �xed priority executives. Real-Time Systems, 4(1):37{52, March 1992.[14] R Alur, C Courcoubetis, and D Dill. Model-checking for real-time sys-tems. In IEEE Fifth Annual Symposium On Logic In Computer Science,Philadelphia, pages 414{425, June 1990.[15] J S Ostro�. A veri�er for real-time properties. Real-Time Systems, 4(1):5{36, March 1992.[16] B Potter, J Sinclair, and D Till. An Introduction to formal speci�cationand Z. Prentice-Hall, 1991.[17] C B Jones. Systematic software development using VDM. Prentice-Hall,1986.
17


