A Formally Based Hard Real-Time Kernel

Steven Bradley William Henderson David Kendall
Adrian Robson *

Abstract

In order to demonstrably satisfy hard real-time deadlines, a system
must be predictable, and in particular the kernel must be predictable. In
this paper we present and analyse a predictable kernel related to AORTA,
a formal design language for hard real-time systems. The features of
the kernel allow AORTA designs to be verifiably and semi-automatically
implemented, and enable verified guarantees to be given about the real-
time behaviour of the system.

Keywords: real-time, formal methods, performance prediction, pro-
cess algebra.

Introduction

The purpose of a hard real-time kernel is to allow concurrent cooperating pro-
cesses to achieve their specified performance. As the overall aim of a hard real-
time kernel is to guarantee performance of the whole system, a simple scheduling
mechanism which trades off some efficiency for predictability can be very use-
ful; where hardware costs are relatively small compared with development costs
and where guaranteed time performance is critical, such a kernel is of interest.
A commoner approach to real-time kernel design is to have a system of pri-
orities (possibly dynamically defined) which ensures that ‘important’ processes
can claim processing time whenever they want it, at the expense of those of
lower priority. Unfortunately, high priority processes can often depend on lower
priority processes, for instance if they share a critical section of code which may
only be accessed by one process at a time; this can lead to a process effectively
locking itself out (an extreme consequence of ‘priority inversion’). Dynamic as-
signment of priorities can overcome these problems [1], but gives a kernel whose
performance is difficult to predict and analyse in general, and hence difficult to
verify.

As well as managing processor allocation, a kernel is expected to deal with
inter-process communication and resource management (typically mutual exclu-
sion), and handle these in a way that is demonstrably safe. Once the communi-
cations and scheduling arrangements are handled in a predictable way it is then
possible to start to predict the behaviour of the whole system in order to show
that it satisfies its specification. The complexities of communicating concurrent
systems are such that even with a detailed knowledge of the behaviour of all
of the individual processes it can be very difficult to form an accurate picture

*The authors are with the Department of Computing, University of Northumbria at New-
castle, Ellison Place, Newcastle upon Tyne, NE1 83T, UK

Specification AORTA design

Customisation

Figure 1: Implementation of an AORTA design using the kernel

of the behaviour of a whole system. Formal methods can be used in such sit-
uations, to provide assurance that the picture truly represents the system and
that the specification is matched in all instances [2, 3].

If justification is needed for verifying safety-critical systems then we don’t
have to look very far to find systems whose time performance is crucial: fly-by-
wire systems, nuclear and chemical plant controllers, and life support systems
all have vital real-time characteristics. Even systems which are not apparently
time-critical, but which do have concurrency, can develop faults because of tim-
ing. The Therac-25 medical accelerator had, among other problems, timing
conditions which caused apparently transient faults, resulting in massive over-
doses of radiation [4].

In this paper we present a hard real-time kernel which offers predictable
scheduling along with safe communication primitives. It is closely related to
AORTA [5], a formal language for hard real-time systems, used to design the
timing and communication aspects of a concurrent system, whose language con-
structs are implemented using the kernel. Having a formal definition of the
system via AORTA allows its behaviour to be formally analysed and verified
with respect to a formal specification. Through AORTA, a link can be made
between the high level reasoning of the theoreticians and the implementation
considerations of kernel designers. This link is, unfortunately, not usually made
in existing work.

As well as a kernel for AORTA | prototype tools also exist for automatically
customising the kernel for an AORTA design, and for generating the framework
for the process code (written in C), as shown in figure 1. C was chosen for purely
pragmatic reasons, such as availability of timing tools for cross compilers [6],
but in principle any language which is amenable to static timing analysis could
be used. A simulator tool has also been written, which allows a designer to try
out a design before working out the detail of the implementation.

Before considering the kernel in detail, we give an overview of AORTA, to
give a specification of the services that must be offered by the kernel. The design
and implementation of a kernel which provides such services are described in
the following section, after which the performance of the kernel is analysed. In
order to indicate how the kernel can be used with AORTA, the next section
describes a possible design method before the final, concluding section.

An Overview of AORTA

AORTA (Application Oriented Real-Time Algebra) [5] is a formal design lan-
guage specifically for concurrent hard real-time systems, related to timed ver-
sions of process algebras such as CCS [7], LOTOS [8] and CSP [9]. AORTA
deals with the time performance and communication aspects of a system: all
sequential computation or other time-consuming activity is represented by the
amount of time taken to complete it, making the resulting mathematical model
of the system tractable. The few constructs of AORTA are expressive enough
to design real systems, and yet restrictive enough to ensure that the system
i1s implementable — 1t is on the second count that existing timed algebras fall
down.

In this section we introduce AORTA by using a semi-realistic example, based
on a chemical plant controller. The controller has to monitor and log tempera-
tures within the reaction vessel, and respond to dangerously high temperatures
by sounding an alarm. Two rates of sampling must be provided, to be selected
by the plant operator, each of which has its own output format for the logging
function. In order to ensure safety of the plant, the temperature must be sam-
pled at least every two seconds, and if a reading lies outside the safety threshold
the alarm must be sounded. A similar system is described in [10].

An important feature of AORTA is that timing information about a process
does not have to be exact, but may be expressed as upper and lower bounds on
the time (execution time or communication time). This nondeterminism arises
in all multitasking systems, from the scheduler, the communication mechanisms,
and sections of sequential code, but it is not addressed in other formal meth-
ods which deal with time. The number of constructs for building processes in
AORTA is relatively small, and the number of processes within a system is fixed,
i.e. there can be no dynamic process creation, allowing straightforward timing
analysis, and guaranteeing implementability. Each process has a fixed number
of communication gates, each of which may connected either externally or in-
ternally. All communication between processes must be between linked pairs of
gates (as in figure 2), and is synchronous. When a process wishes to communi-
cate on a certain gate, it has to wait until the process at the other end of the
link is also ready before the communication takes place, and the process can
proceed. This so-called blocking communication mechanism is closely related to
that of occam [11], and is similar to the Ada rendezvous [12]. One solution to
the plant control problem just mentioned involves two processes, Convert and
Datalogger, with two internal connections and a total of five external connec-
tions, as shown in figure 2.

Individual processes are defined using four basic language constructs: com-
putation delay, communication (and its extensions of choice and timeout), re-
cursion, and data dependent choice. A summary of the syntax for sequential
processes is presented in table 1. Firstly, all time-consuming computation is
represented only by the amount of time it takes: no attempt is made to model
the data in the system at this stage of the design, so all details of what happens
during this time are omitted. The notation used for this is a pair of square
brackets enclosing the time taken, where the time can be given as an exact fig-
ure or two numbers separated by a comma, giving the lower and upper bounds
on the time ([t1,t2]8). The second construct is for blocking communication as
described earlier, and is written by simply putting the name of the gate followed
by a full stop before the subsequent behaviour definition (a.S). Recursion (loop-

warning in mode
out

Convert
changespeed

download senddata

getdata

Datalogger

speed

Figure 2: Connectivity of a System Containing Convert

computation delay [t]s

bounded computation delay [t1,t2]S
communication a.s

choice S1 + S2

timeout (S1 + ... + Sn)[t>S
bounded timeout (81 + ... + Sn)[t1,t2>S
recursion equational definition
data dependent choice S1 ++ S2

Table 1: Summary of AORTA concrete syntax

ing) is the third construct and can be written by using an equational definition
of a process and subsequent naming of that process. These three constructs are
used in this first attempt at the Convert process of our plant controller:

Convert = in.[0.001,0.004]Jout.Convert

Here, Convert reads its data from gate in, and then does the conversion, which
takes between 0.001 and 0.004 seconds. Once the conversion is complete, the
data is output on gate out, and the process loops back to input new data.

The communication construct (.) has two extensions available: a choice
between offered gates, and timeout continuation if no communication takes place
within a certain time. Similar features are offered by Ada and occam, but in
AORTA allowances are made for the time taken for communication or timeout
to occur. Choices between gates are written using a + in between the branches
of the choice, and the flow of control of the process depends on which gate is
matched first. To allow our conversion process not only to wait for input, but
also have the conversion mode changed by the user, a mode gate is offered in
choice with in. If mode is matched first then a signal is sent to the Datalogger
process to tell it to change sampling speed, and a piece of reconfiguration code
(recalculation of a look-up table) is executed, which takes between 0.3 and 0.4
seconds. Our Convert process would then look like this:

Convert = in.[0.001,0.004]Jout.Convert
+

mode.changespeed. [0.3,0.4]Convert

As only one branch may be chosen, and the offer of communication on other
branches is lost once one is taken up, choice can be used to implement mutual
exclusion for access control to a resource of any kind, and in the case of the
Convert process, it prevents a mode change during a conversion.

Timeouts can be added to a communication or choice between communica-
tions, so that if no communication events occur within a certain period of time
then control is passed to another branch. As with delays, if timeouts cannot be
guaranteed to take place at an exact point in time AORTA allows bounds to be
placed on the time taken to time out: timeout will definitely not have occurred
before the earliest time, and will definitely have taken place by the latest time
if no communication has been possible. To write this down, the communica-
tion(s) over which the timeout is taking place is/are bracketed and followed
by the bounds (or an exact figure if available) inside [.. >. The behaviour
which 1s to take place in case of a timeout is given after the >. For example,
to ensure that the Convert process is not inadvertently blocked by waiting for
communication with Datalogger, a timeout of about 1.5 seconds is added to
the out and changespeed communications:

Convert = in.[0.001,0.004] (out.Convert)[1.5,1.505>Convert
+

mode. (changespeed. [0.3,0.4]Convert)[1.5,1.505>Convert

Note the use of brackets to indicate which communication the timeout refers
to. Used in this way, timeouts can be used to implement watchdogs or polling
loops.

Choice by using + allows the flow of control of a process to be changed
depending on which of several communications takes place. Sometimes choices
are not made on the basis of where the process has communicated, but rather
on the values that are passed during communication, or on values computed
by the process. AORTA views all such branches as data dependent, and as
it has no information about the data of the system, the choice appears to be
nondeterministic. Such choices are written using the fourth and final construct,
called data dependent choice. To define branches which may depend on data,
a ++ symbol is placed in between the possible behaviours. In order to send a
warning alarm for dangerously high readings, our Convert process has to use a
data dependent choice, which would be based on the value read from gate in.
The final version of Convert then looks like this:

Convert = in.(Convert2 ++ warning.Convert2)
+
mode. (changespeed. [0.3,0.4]Convert)[1.5,1.505>Convert
Convert2 = [0.001,0.004]
(out.Convert)[1.5,1.505>Convert

Notice the use of Convert2 within the definition, which is defined along with
Convert. These definitions are mutually recursive (they refer back and forth to
each other), and are used for ease of reading and expression of a single sequential
process. As many simultaneous definitions as required may be given, with flow
of control passing between any of them by recursion.

Having introduced our language constructs in the development of the Convert
process, we now use some of them in the definition of the Datalogger process.

This process periodically requests data from the in gate of Convert, and may
be requested to change the speed of sampling via the changespeed gate. It
may also get requests for the data to be downloaded to an external machine.
The basic process samples every second (the speed of sampling depends on the
Datalogger process, as Convert will always offer data as soon as it is ready),
and in between samples waits for a speed change command, which changes the
sampling period to 0.25 seconds:

Datalogger = getdata.[0.01,0.015]
(speed.Datalogger2)
[1.00,1.005>Datalogger
Datalogger2 = getdata.[0.001,0.015]
(speed.Datalogger)
[0.25,0.255>Datalogger?2

In order to add a download facility, a download communication is offered in
choice with speed; if this is requested, then some formatting computation is
done (for between 0.5 and 1.0 seconds) before the data is sent out on senddata.
This final version of Datalogger is defined as follows:

Datalogger = getdata.[0.01,0.015]
(speed.Datalogger2
+
download.[0.5,1.0]senddata.Datalogger)
[1.00,1.005>Datalogger
Datalogger2 = getdata.[0.001,0.015]
(speed.Datalogger
+
download.[0.5,1.0]senddata.Datalogger2)
[0.25,0.255>Datalogger2

The four constructs (computation delay, communication, recursion and non-
deterministic choice) are used to define individual processes, which can then
be connected together into a system by using the parallel operator, written
|. To allow inter-process communication, pairs of gates may be connected by
specifying a connection set in angle brackets after the parallel processes have
been listed. Externally connected gates are also listed, and the delays for all
communications (which will depend on the scheduling period) are also specified.

The system definition of our plant controller is then written

(Convert | Datalogger)

<(Convert.changespeed,Datalogger.speed:0.001,0.003),
(Convert.out,Datalogger.getdata:0.001,0.003),
(Convert.in,EXTERNAL:0.001,0.003),
(Convert.warning, EXTERNAL:0.001,0.003),
(Convert.mode,EXTERNAL:0.001,0.003),
(Datalogger.download,EXTERNAL:0.001,0.003),
(Datalogger.senddata,EXTERNAL:0.5,10.0)>

which is the textual representation of figure 2. Notice that all communication
delays are the same size, except for senddata, as this involves the transfer of a
substantial amount of data.

Once a system has been written in this way its behaviour has been precisely
defined. AORTA has a formal mathematical definition and semantics, and hence
allows mathematical reasoning about the timed behaviour of systems, but we
will not touch on these here for lack of space. The interested reader should

see [B].

The Kernel Design and Implementation

Many kernels could be used to implement AORTA designs, but the kernel that
we present is designed so that it is relatively easy to produce the figures for min-
imum/maximum execution and communication times. The scheduling mecha-
nism is just about the simplest available, with the processes being preemptively
scheduled on a fixed time slice in a fixed order (i.e. no priorities). Inter-process
communication is managed by the kernel, and implemented using shared mem-
ory. Some round-robin schedulers rely on every process completing its required
activity within its allotted slice [13], but we make the scheduling transparent
to the process, so that there is no such notion of required activity within a
slice, and assume all activity is preemptible. In other words, rather than having
tasks executing periodically/synchronously, our processes do not have any fixed
period, and achieve all necessary synchronisation via timeouts and communica-
tion. If a process has to be excluded from accessing some resource at the same
time as another process, this is achieved by using the communication primi-
tives, which makes for a safer and more comprehensible design, and one which
1s much more easily changed. The important point about having a fixed time
slice 1s that the performance of each process i1s independent of the behaviour of
other processes, except where made explicit at a communication point, so that
the processor 1s effectively split up in a number of smaller processors, one for
each process. As well as making performance prediction for each process much
simpler, this transparency means that decisions about whether a distributed or
multitasking implementation is more appropriate can be deferred until a more
appropriate point. Indeed, AORTA processes need not be software processes,
but could equally well be built in hardware, allowing formal analysis to be done
on hardware/software codesign of a system.

The more interesting part of the kernel i1s the communication mechanism.
Each process may be ready to communicate on any number of gates and may
also have a timeout in effect. We require that when a pair of gates in the given
connection set are both ready to communicate they must do so within a certain
amount of time, and that if any other gates are offered in choice, they must be
disabled so that only one gate in the choice may communicate. As any process
may be descheduled at any point, careful attention has to be paid to keeping
a consistent and complete set of information available to the kernel and the
processes, to ensure that the mechanism is sound.

To describe the algorithm used to implement communication, we first of all
have to introduce the various flags and pointers associated with each process
and with each gate of the system. Let us assume that we have an indexing
set [for the processes, and a set J for the gates, and that ¢ and j range over
I and J respectively. For each gate j there are two flags: gate;.ready and
gatej.has_comm, which correspond to the readiness of the gate to communicate
(i.e. the process to which it belongs has offered it by itself or in a choice), and
the successful completion of communication on that gate. There is also an entry
choice_addr; which contains a pointer to a list of the gates in choice with j at

variable set reset

name what when what when

set_up; process ¢ | wishes to comm | kernel done set up
choice_list; process i | before set_up; N/A N/A

gate;.ready kernel in set up kernel after comm
gate;.has_comm | kernel after comm process | after noting comm

Table 2: Access to Communication Variables in the Kernel

the current time, and a choice list choice_list; for each process. Finally, each
process has a flag set_up; which 1s used to indicate when that process wishes
to offer a communication. Figure 3 shows how these flags are changed when a
simple choice between two gates is offered.

There are two parts to the algorithm for communication, which effectively
run concurrently: the code executed by the kernel on every reschedule, and
the code executed by a process when it wishes to offer a communication. In
order for a process to offer a communication (with or without choice), it signals
to the kernel that it wishes to communicate, and on which gates it wants to
communicate. This is done by storing the gate identifiers in choice_list; (for
process i), and then setting the set_up; flag. This corresponds to figure 3a.
During its reschedule, the kernel checks the set_up; flag for every process, and
if it is set, it goes through the corresponding choice list, setting the gate; .ready
flag for every gate it finds there, as a signal to itself that gate j wishes to
communicate, as illustrated by figure 3b. After having checked for setups, the
kernel looks through the connection set (i.e. the set of pairs of gates that are
connected in the design). If it finds a pair in which both gates are ready to
communicate (have their gate;.ready flags set), it resets all of the gate; .ready
flags in the corresponding choice lists (as pointed to by gate;.choice_addr), and
sets the gate;.has_comm flag for each of the communicating gates, as illustrated
by figure 3c. The setting of the gate; .has_.comm flags is the signal back to
the processes which initiated the communication that it has been successfully
completed, and where there is a choice, which of the gates was successful, and
it resets the gate; .has_comm flag before continuing. Table 2 summarises how
the various variables are accessed, and under what conditions they are set and
reset, while figures 4 and 5 give the pseudo-code forms of the algorithms used
by the communicating process and the kernel respectively. For the process part,
the pseudo-code is presented as a function, which takes as its arguments the
process identifier and a set (or list) of gates, and returns the identifier of the
gate on which communication takes place. In the case of the kernel, the code is
executed every time a deschedule takes place.

Figure 6 gives an example of how the kernel works, by showing the order of
flags being set and reset for a communication between the Datalogger process,
which is offering a choice between download and speed, and the Convert pro-
cess, which is offering the gate changespeed. As Convert.changespeed and
Datalogger.speed and linked in the connection set, they trigger a communi-
cation when both are ready, as indicated on the diagram.

The algorithms as presented in figures 4 and 5 do not describe the way that
timeouts and value-passing (as opposed to pure synchronisation) are handled,
but they require only a little modification to deal with these features. Timeouts
can be considered as choices with an extra possible branch, where instead of a
communication event triggering the branch, a timeout event is used instead. By

choice list_i

| ready 1 has comm_1 choice addr_1
a) I \'

ready 2 has comm_2 choice addr 2

has comm_1 choice addr_1

|
/
|

ready 2 has comm_2 choice addr_2

choice list_i
| ready 1 has comm_1 choice addr_1
o | — \ —
I |
. |
ready 2 has comm_2 choice addr 2
set_up i

Figure 3: An Illustration of the Communication Flags

function communicate(i,choices)
for all j in choices do

copy j into choice_list;
end do
set_up; := true
got_comm := false
do while (not has_comm)

for all j in choice_ list; do

if gate.has_comm; = true then

Jeomm =]
gate.has_comm; = false
gol_comm := true
end if
end do
end do

return jeomm

Figure 4: Communication Function for Process 2

for i = 1 to number of processes do
if set_up; = true then
set_up; = false
for all j in choice_list; do
gatej.ready := true
end do
end if
end do
for all (j1,J2) in connection set (* i.e./ j; and js are connected *) do
if gate;, .ready = true and gate;,.ready = true then
for all j in list pointed to by choice_address;, do
gatej.ready := false
end do
for all j in list pointed to by choice_address;, do
gatej.ready := false

end do
gatej, .has_comm = true
gatej, .has_comm = true
end if
end do

Figure 5: The Kernel’s Communication Test Algorithm

10

Datalogger
Kernel
Convert
Kernel
Datalogger
Kernel
Convert

CPU task

set_up(Datal ogger) ’—‘
set_up(Convert) ’—‘
gate(Datal ogger.speed).ready Q \ ‘
gate(Datal ogger.downl oad).ready é \ ‘
gate(Datal ogger.speed).has_comm 4

)—(4
gate(Datal ogger.download).has_comm

gate(Convert.changespeed).ready \,
gate(Convert.changespeed).has_comm

Figure 6: Communication Between the Convert and Datalogger processes (tim-
ings not to scale)

including a timeout in the choice list, the relevant communications are disabled
if timeout occurs, and the timeout is disabled if a communication event occurs.
A timeout has associated with it a ready flag, a has_comm flag, and the time at
which it should occur. Instead of the kernel checking for a pair of gates to be
ready to communicate, it checks to see whether the occurrence time has been
passed, and if it has, the choice list is reset and the has_comm flag set, as for
internal communications.

A value-passing mechanism is provided by associating with each gate storage
for a data-in value and a data-out value. The value passed could be the data
itself, or a reference to the data. When the kernel finds a pair of gates ready to
communicate, it copies the data-out of one process to the data-in of the other
and vice versa. As far as the calling routine for the process i1s concerned, an
extra parameter 1s added to the communication function, which is a pointer to
an array of values to be passed in. These values are copied to the relevant data-
out slots before the sef_up flag is set, and after communication has occurred
the data-in from the gate which has communicated is copied into the relevant
entry in the array of values. Note that data-passing is not modelled by AORTA
as such, but this does not mean it cannot be used, only that it is not subject
to formal analysis within AORTA. The concluding section suggests that other
formal methods might be used in conjunction with AORTA to allow reasoning
about the data within a system.

The actual implementation of the kernel and communication primitives (i.e.
functions for communication and timeout) was written in 68000 assembly lan-
guage, with the communication primitives callable from C. The code for the
whole kernel, including the communication primitives, only occupies about 3
kilobytes of memory, with storage for the variables, flags, and stacks of a small
system with four processes and ten connections occupying another 3 kilobytes.

11

Analysis of the Kernel Performance

Predictability 1s at a premium in a system which is to be formally verified,
so the scheduler described is very predictable, if not the most efficient under
light loads. It should be noted, though, that it is under heavy processing loads
that prediction becomes most important, and this scheduler has the pleasing
property that the more processing required the more efficient it becomes. The
basis is a simple round-robin scheduler which switches processes at a fixed rate
in time, regardless of their state of execution.

There are three aspects of the timing behaviour of an implementation which
need to be verified: the amount of processing time each process gets, the time
delay in communication, and the bounds which can be placed on timeout oc-
currence, which we shall deal with one at a time. Figure 7 gives a scheduling
diagram for a system with three processes, and introduces the variables we will
use in the analysis. The fundamental variable in the system is the interrupt or
scheduling period, which we shall call p, and after each p time units the kernel
is activated via a deschedule. Each time the kernel is activated (via an inter-
rupt), a process is descheduled; once the kernel has finished its activity the next
process is rescheduled. Depending on how much setting up and communication
the kernel has to do, the amount of time it takes to perform all its tasks will
vary, but can be bounded. We define the upper and lower bounds on time spent
in the kernel at each activation to be k; and k, respectively, (actual figures for
this implementation are given later,) and the value for a particular activation
of the kernel is written k. The point at which each process starts will depend
on how long the scheduler took, but the time between deschedules is constant,
and is represented by d; for the process ¢. For a system with the processes
being scheduled one after another, the d; will be the same for all processes, but
where one process occurs twice as frequently as others (e.g. 12131213... as in
figure 7) the d; may be different, although they will all be integer multiples
of p. We shall also refer to the process schedule time, which is the amount of
time a process remains scheduled. This depends on how long the kernel takes
to execute immediately preceding the process being scheduled, but is bounded

by [p— ku,p— ki].

The easiest way to calculate the amount of real time required for a certain
amount of processing time on a process is to consider the amount of time that
the process will be in the middle of the processing, but not scheduled. For
the minimum execution time we have to consider the best situation, which 1is
where the processing starts at the beginning of a schedule. In this case, if the
amount of processing time required is less than the time the process schedule
time, then the real time elapsed will be equal to the processing time required, as
the processor will have been solely devoted to that processing for its complete
duration. If the processing time is greater than the process schedule time then
the number of blocks of unscheduled time will be given by |r/(p — k;)|, where r;
is the required processing time and |z] is the lower integer part of #. This comes
from the assumption that this is the best case, so all kernel execution times will
be minimal (k;), giving a process schedule time of p — k;. Having calculated the
number of blocks of unscheduled time we get the amount of unscheduled time
to be

72] * (di + ki = p))

as each unscheduled block will last for (d; — (p — k;)). This gives a total elapsed

12

I_ p Kernel
kl<k<ku

di Process 1
Process
— Schedule
Time

d?2 Process 2

(Re)Schedule P =2 "\ Deschedule
Point Point Process 3

Figure 7: Scheduling diagram for three processes

time of

ri + 2] < (di = (p = k1))
as the minimum for a required amount of processing r;. The worst case (which
is usually of most interest) is calculated similarly, but this time the computation

starts just as the process is being descheduled, and all of the kernel execution
times are maximal, giving an elapsed execution time of

ri + [55r | x (di + ku — p)

P

where [z] is the upper integer part of .

We measure the communication delay from the point at which the second
(i.e later) process starts the communication procedure, to the point at which
the process has noted the communication and carries on. This delay will be
different for the two sides of a communication, but both sides will have the
same upper and lower bounds on the delay. There are three phases to the
communication, each of which contributes to the overall delay. Firstly, some
processing is required to set up the choice list before the set_up; flag is set. We
define the upper and lower bounds on this time to be pre_comm; and pre_comm,,
respectively. Secondly, once set_up; has been set, there is a delay during which
the kernel will set up the communication, complete it, and eventually reschedule
the process. The best case for this delay occurs when the process 1s descheduled
just as it completes its precommunication computation, giving a delay of d; —
(p— k7). In the worst case, the process only just fails to complete before being
descheduled, giving a delay of 2 x d; — (p—ky). Thirdly there is a delay from the
process next being scheduled, to the final completion of the processing required
to reset the has_comm; flag and continue to the correct branch of the choice. If
we write the bounds on this time as post_comm; and post_comm,,, the minimum
overall communication delay will be

pre_commy + (d; — (p — k1)) + post_comimy

13

and the maximum will be
pre_commy + (2 X d; — (p — ky)) + post_commy,

Both of these figures assume that the very small amount of post-communication
processing will be completed in one schedule block, and the maximum time can
be reduced to

di + (p— ki) — (p — ku) + post_commy, = d; + ky — ki + post_commy,

if it can be shown that the pre-communication processing will be completed
in one schedule block (as would probably be the case if the communication
immediately followed from another).

A timeout of time ¢, under a similar analysis, yields a minimum occurrence
time of

pre_commy + (Ltjl'lpj +) xdi—(p—h)

and a maximum of

pre_comim, -+ (ftjl_p] + 1) xdi — (p—ky)
which can be reduced to

[t;ll_,p] X d; + ky — ki 4+ post_commy,

if the pre-communication processing can be guaranteed to complete within one

schedule block.

In the above analyses, p, the scheduling period and d;, the time between
schedules for process 7, may be adjusted by the implementor, but the figures for
the kernel k; and &, are fixed by the kernel. The actual figures depend on the
number of processes in the system, the number of connections, and the maximum
number of gates in any choice. The minimum time is of the approximate form

k; = 1222 + 98 x no_processes + 88 X no_connections
and the upper bound of the form
ky = 22224268 X no_processes+ 88 X no_connections+ 212 x max_no_in_choice

where the figures given are for clock cycles on a 68000 micoprocessor. For a
typical system with four processes and ten connections, running on a 68000,
the bounds on kernel execution time are [2406,5032] clock cycles, i.e. [0.3,0.6]
milliseconds for a clock speed of 8MHz.

Using the Kernel in a Design Method

As the main point of interest of the kernel is its amenability to formal analy-
sis, we now look briefly at how the kernel fits into a scheme which provides a
verifiable route from specification to implementation. Ultimately the aim is to
be able to write a formal specification, and produce a verified AORTA design
which can then be implemented semi-automatically. This paper describes how
an AORTA design can be implemented: the kernel is customised to the design
(using the connection set), and a C program for each process, involving commu-
nication, timeout and nondeterministic choice is generated automatically. The

14

code for the computations concerned (as modelled by delays [.. 1) is written
separately by the implementor, attached to the AORTA design as an annotation,
and included with the communication code by the code generator. Information
about data passing during communication, which lies outside the scope of the
AORTA design, is included as an annotation to the design in the same way, and
is used to set up and read a value array. Two routines are offered by the kernel,
called communicate and communicatet, for communication and communication
with timeout respectively, which are called by the code produced by the code
generator when a choice or timeout is required. These are implementations of
the algorithm presented in figure 4. As regards verification, the previous section
gives an analysis which allows the bounds on the time for delays, communication,
and timeout to be calculated; put together with bounds on the processing time
required for each computation (using [6] for instance) this provides verification
techniques for all of the timing aspects of the implementation.

The route from an AORTA design to an implementation is complete, so
that a system can be built automatically from its design, and have its real-time
properties verified. There is currently a simulator tool, which allows a design
(including its timing) to be explored by a user in an interactive way, which
would be used as the first step in a verification process. Figure 8 shows how
the work fits together into an overall design method: arrows going downward
represent implementation, arrows upwards verification; solid arrows indicate
currently available routes, automated where appropriate, and the dashed arrows
represent possible future pieces of work.

AORTA has been tried on some small examples, including the car cruise
controller, but there is not yet enough information to evaluate fully whether our
assumptions about the tradeoff between efficiency and predictability are sound.
Other questions may be raised about the applicability of AORTA to safety-
critical systems, given its use of C, interrupts, and concurrency. The choice of
C is not really an issue, as we mentioned earlier that any language which can be
analysed for timing could be used instead. Interrupts and concurrency, however,
do raise more interesting points, as they are sometimes prohibited because of
the unpredictable behaviour they can cause. We would argue that the aim
of this work is to provide techniques for reliably, predictably and verifiably
using concurrency where appropriate — the use of fixed period interrupts is a
secondary issue. It 1s our job to prove that concurrency using interrupts can be
used safely within critical hard real-time systems, as long as a proper analysis
1s performed.

Conclusion

In a hard real-time system it is not just good average performance that is re-
quired, but guaranteed performance in all cases. By using a predictable sched-
uler coupled with a formal analysis technique, we can provide sound guarantees
about system performance, guarantees which refer to the actual implementation
rather than to an abstract model of 1t. The techniques described here are as ap-
plicable to distributed processing as to multitasking, so that is possible to defer
design decisions about how many and what kind of processors may be required
until after the AORTA design is complete. In addition, there is no reason why
a process need be restricted to software: an AORTA process could equally well
be implemented in hardware, although this would require further investigation.

15

User Requirements [------3 Formal Specification

z 7 /|\ !
_ - Prove | :
Design !
Simulate Write Design ~ Wri i . 7 Corrgct : :
7 v
2 to
I
. | .
. Wr!te Verify | : Wr!te
AORTA Des gn Functional Code 1 ! Functional

Code 1 , Code
I
I
1
I
I

I
|
I
Customize Kernel TimeKernel Generate C Code ~Time Code :
|
Ly

AORTA Kernel Offer Communciation Primitives Pr.oc:e$ Code

Assemble to Target Compileto Target

Implementation

Figure 8: AORTA within a real-time design methodology

Referring to figure 8, we can see where future work will fit in to a design
method. Techniques for formally verifying an AORTA design with respect to
a formal specification are currently being looked into, and it is hoped that
existing work such as [14, 15] may be useful in providing automatic verification
procedures. One particularly interesting piece of work would be the integration
of existing formal methods for developing sequential code (such as Z [16] or
VDM [17]) with AORTA, so that the timing of a system and its functional
correctness could be verified in a unified way, giving a complete verification
technique for hard real-time systems.

Acknowledgements

The authors would like to thank the University of Northumbria at Newcastle and
Northern IT Research for their financial support, and acknowledge the helpful
comments of Mike Bradley and the anonymous referees on earlier versions of
the paper.

References

[1] A Burns. Scheduling hard real-time systems : a review. Software Engi-

neering Journal, 6(3):116-128, May 1991.

[2] G Bruns and S Anderson. A case study in the analysis of saftey require-
ments. In H H Frey, editor, IFAC symposium on safety of computer control
systems (SAFECOMP ’92), pages 1-6, 1992.

16

[3]

[16]

[17]

M Thomas. The industrial use of formal methods. Microprocessors and

Microsystems, 17(1):31-36, 1993.

N G Leveson and C S Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 26(7):18-41, July 1993.

S Bradley, W Henderson, D Kendall, and A Robson. Designing and im-
plementing correct real-time systems. In W-P de Roever, editor, Formal
Techniques for Real-Time and Fault-Tolerant Systems "94 (FTRTFT 94)
(To appear). Springer-Verlag, 1994.

CY Park and A C Shaw. Experiments with a program timing tool based
on source-level timing schema. IEEE Computer, 24(5):48-57, May 1991.

R Milner. Communication and Concurrency. Prentice-Hall, 1989.

International Standards Organisation. Informations processing systems -
Open Systems Interconnection - LOTOS - A formal description technique
based on the temporal ordering of observational behaviour, volume ISO 8807.

ISO, 1989-02-15 edition, 1989.
C A R Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

S Bradley, W Henderson, D Kendall, and A Robson. Practical formal
development of real-time systems. In 11th IEEE Workshop on Real-Time
Operating Systems and Software, RTOSS 94, Seattle, pages 44-48, May
1994.

G Jones. Programming in occam. Prentice Hall, 1987.

Department of Defense. Reference manual for the Ada programming lan-
guage. springer-Verlag, 1983.

C Douglass Locke. Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives. Real-Time Systems, 4(1):37-

52, March 1992.

R Alur, C Courcoubetis, and D Dill. Model-checking for real-time sys-
tems. In IFEE Fifth Annual Symposium On Logic In Computer Science,
Philadelphia, pages 414-425, June 1990.

J S Ostroff. A verifier for real-time properties. Real-Time Systems, 4(1):5-
36, March 1992.

B Potter, J Sinclair, and D Till. An Introduction to formal specification
and 7. Prentice-Hall, 1991.

C B Jones. Systematic software development using VDM. Prentice-Hall,
1986.

17

