
1Reducing Conservatism in Response Time Analysisof Distributed SystemsSteven Bradley, William Henderson, David KendallAbstract| Rate Monotonic Analysis (RMA) is a well-established technique for assessing schedulability of peri-odic and sporadic tasks which share a processor resourceusing �xed priority scheduling. An alternative approach toanalysing such systems is to build a model which representsthe behaviour of the system more dynamically, taking intoaccount the dependency between the tasks.I. IntroductionSince rate-monotonic scheduling (RMS) and rate-monotonic analysis (RMA) were �rst proposed [8], workhas been carried out to extend the basic model of compu-tation from a set of independent periodic tasks with �xedexecution times sharing a single processor, and to extendthe analysis from simple schedulability. Audsley et al [4]report on the development of the theory supporting �xedpriority pre-emptive scheduling, including extensions to ac-count for interdependence of tasks (through blocking) andthe analysis of distributed systems. Analyses of end-to-endresponse times in distributed systems have been carried outusing TDMA [9] and more recently with CAN [6] as thecommunication mechanism.Although more recent work has taken account of extradelays incurred through interdependence of tasks, ensur-ing that the analysis remains conservative, one area whichhas not received so much attention (as noted by Audsleyet al [4]) is to take advantage of the restrictions on pos-sible execution paths brought about by interdependence.This has meant that predicted response times can be overlypessimistic. In this paper we aim to address the problemof pessimism by explicitly modelling precedence (ordering)relationships between tasks, and performing an exhaustiveanalysis of all possible execution paths through a system.The analysis is carried out be performing reachability anal-ysis on a timed hybrid automaton [1].The motivation for this work is demonstrated in sec-tion II through an example which exhibits pessimism un-der a standard static response-time analysis (RTA). In sec-tion III we introduce our system model, and de�ne a sim-ple language (PG) in which such systems can be expressed.We then de�ne a translation from PG into timed hybrid au-tomata in section IV. Section V explains how response timeanalysis is carried out, and brie
y evaluates the results ofthe analysis. Finally, our conclusions, and the relationshipto other work is presented in section VI.Steven Bradley is with the Department of Computer Science,Durham University, South Road, Durham, DH1 3LE, UK; WilliamHenderson, and David Kendall are with the Department of Comput-ing, University of Northumbria at Newcastle, Ellison Place, Newcastleupon Tyne, NE1 8ST, UK

II. Example of PessimismOur simple example consists of a distributed system withtwo processors connected by a single CAN-style bus, withnon-destructive priority-based arbitration. On processor 1there are two similar tasks, Sender A and Sender B. Thesetasks are periodically triggered, and they each read a sen-sor, the values of which need to be sent to correspondingreceiver tasks, Receiver A and Receiver B, on processor2. This is achieved by sending messages Message A andMessage B via the bus. We shall assume that each of thetasks and messages has a �xed resource requirement of 200,so we have essentially two clone sub-systems, system A andsystem B, each of which has a periodically triggered sendertask, which triggers a message upon completion, which inturn triggers a receiver task. The tasks and message ofsystem A have higher priority than those of system B.In a control situation where the receiver task acts uponthe information provided by the sender task to providefeedback into the controlled system, a crucial factor in de-termining whether the system can be controlled in a stableway is the response time from the reading being taken tothe control being applied. Therefore, as well as examiningschedulability issues on the processors and bus, it is im-portant to be able to predict the end-to-end response timefrom the start of the sender task to the end of the receivertask.The analysis of the response time for subsystem A is rea-sonably straightforward, but subsystem B is more interest-ing. A standard response-time analysis adds the responsetimes for each section, with each section having contribu-tions from blocking and execution time. This givesMaxBlocking(SenderB) = 200MaxBlocking(MessageB) = 200MaxBlocking(ReceiverB) = 200TotalExecution(B) = 600TotalResponse(B) = 1200However, taking into account the precedence constraints,we can try to construct the actual worst case for the re-sponse time of subsystem B. This occurs when Sender Bis released and just fails to complete before Sender A isreleased, which then pre-empts Sender B. Shortly afterSender A completes, Sender B completes and releases Mes-sage B. However, Message A has already been released,blocking Message B. Once Message A has completed, Re-ceiver A is released and Message B has access to the bus.By the time that Message B has completed, Receiver A hascompleted, so Receiver B has access to processor 2 straight



2
���
���
���
���= Running

���
���
���

���
���
���

= Blocked

Response B

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

��
��
��
��

������
������
������

������
������
������

������
������
������
������

������
������
������
������

Sender A

Sender B

Message A

Message B

Receiver A

Receiver B

B released

A released

Response AFig. 1. Example of pessismismaway. This sequence of events is shown in �gure 1. Be-cause of the precedence relationships, it is impossible forcompetition to occur between subsystems A and B for allthree of Sender, Message and Receiver if both systems usetheir maximum resource requirement (200) for all three,giving an actual worst-case end-to-end response time of1000. This kind of pessimism has been noted experimen-tally [6].Such an argument is di�cult to construct convincinglyby hand, even for a relatively simple example, but the con-sideration of the many di�erent cases that may occur seemsa good candidate for automation. To automate the analy-sis, however, we �rst need to declare our assumptions aboutthe systems we analyse, and de�ne the language we are go-ing to use to describe the systems.III. PG: A Simple Language for DescribingDistributed SystemsIn a simple response time analysis, the precedence re-lationships between tasks are not made explicit, but theperiod of a task which is triggered by the completion ofsome other task is inherited from the triggering task. Ourmodel of computation is very similar to that used in rate-monotonic style analyses, except that we explicitly modelthese precedence relationships. The most basic componentsin our model are tasks, which can be in one of three states:waiting (to be released), ready (to run, but not running)and running. Each task has a simple life cycle: it is releasedat some trigger event, after which it competes for some re-source (e.g. access to processor) until completion. The timetaken to complete will depend on its bounded resource re-quirement (e.g. processing time) and upon the competitionfor the resource. Competition is managed using �xed prior-ity pre-emptive scheduling, although tasks may be declaredas nonpreemptible, in which case they will retain access tothe resource from their �rst access until their completion.A trigger event can either be the elapsing of a �xed pe-riod, or the completion of some other task. Communica-tion is assumed to take place via a CAN-style bus withnon-destructive priority-based arbitration. In this model,messages have the same properties as nonpreemtible tasks.Tasks with critical sections can be modelled as a series oftasks, with the critical sections labelled as nonpreemptible.

task senderA on processor1 needs [100,200]at priority 0 triggered by period 1300task senderB on processor1 needs [100,200]at priority 1 triggered by period 1400message messageA on can needs [100,200]at priority 0 nonpreemptibletriggered by senderA on processor1message messageB on can needs [100,200]at priority 1 nonpreemptibletriggered by senderB on processor1task receiverA on processor2 needs [100,200]at priority 0 triggered by messageA on cantask receiverB on processor2 needs [100,200]at priority 1 triggered by messageB on canFig. 2. Pessimism example in PGThe following assumptions are made:� each task/message uses exactly one resource� each task/message has exactly one trigger� no task/message can be triggered by a task/messagethat it directly or indirectly triggers (there are no`loops')� bounded resource requirements account for any over-heads (such as kernel activity, memory managementetc)Important di�erences between this model and a morestandard response time analysis model [9] are that� Precedence (i.e. triggering or ordering) relationshipsare made explicit, rather than assuming that alltasks/messages are periodic, with period inheritedfrom their trigger. (Hence the name PG: precedencegraph.)� Jitter (i.e. possible delay of release after period haselapsed) is not included, as this is caused by the in-heriting of periods from triggers: if an `upstream' taskor message does not complete in constant time, thenits completion will not be purely periodic.In summary, each task or message has a name, an associ-ated resource, a bounded resource requirement, a priority,and a trigger. These are expressed using a very simple syn-tax: the example of section II can be expressed in PG asshown in �gure 2.IV. Modelling Distributed Systems with HybridAutomataBefore explaining how we translate system descriptionsin PG into hybrid automata (section IV-B), we �rst brie
yreview the de�nition of hybrid automata (section IV-A).For a more detailed description (including a more formalde�nition) see the paper of Henzinger et al [7].A. Hybrid AutomataTimed hybrid automata are an extension of timed au-tomata [2]. The basic notion is that of a �nite state ma-



3chine, extended with real-valued variables. These variablescan be used to form enabling conditions for transitions (bycomparing with a constant value), and to form invariantconditions for states. Variables can be reset when transi-tions take place, but cannot be assigned a value other than0, and cannot be compared with each other. In a standardtimed automaton all variables increase their value in linewith the increase in global time, and are known as clocks.In a hybrid automaton, the rate at which a variable changesmay vary with the state, but this rate will always be a nat-ural number (an integer n � 0). For the purposes of thispaper, we will only need to consider rates of 0 or 1. Ahybrid automaton is de�ned by� a set of states S� a set of transitions between states T � S � S� a set of variables VA variable valuation is a function v : V ! Real whichassigns a real value to each variable.Associated with each state in S is� an invariant function which takes a variable valuationand speci�es whether it is possible to remain in thestate with that valuation� a rate of change for each variable. We will use theconvention that clocks, with variable names based onC (e.g. C1; Cperiod) always have a rate of 1, so do notneed to be given with the state information. Integra-tors. with names based on I will have a rate of 0 or 1,depending on the state.Associated with each transition in T is� an enabling function which takes a variable valuationand speci�es whether the transition is allowed withthat valuation� a reset function which speci�es which variables are tobe reset to 0 when the transition is taken.B. From PG to hybrid AutomataIn order to translate from a distributed system describedusing PG to a hybrid automaton, we �rst of all need to con-struct the set of states. Each task or message can be in oneof three conditions: waiting (to be released), ready, or run-ning. (In the following, read `task or message' for `task').The whole state space consists of all possible combinationsof each of these conditions for each of the tasks, plus one(or more) state(s) corresponding to failure. Transitions be-tween states correspond to the triggering or completion oftasks. If a task is released in a state where it is not alreadyrunnable, then a transition is made to the state where thattask is runnable. The condition of each of the other tasksis not changed, unless the task that has been released hasa higher priority than a preemptible running task whichshares the resource. In this case, the preemptible task hasits condition changed from running to ready. If a task isreleased in a state where it is already runnable, then thisindicates a problem with schedulability, so a transition ismade to a fail state. Invariants are added to states toensure that some transition is made (either triggering orfailure) once the period has elapsed.

CA>=250
reset(CA,IA)

CA>=250
reset(CA,IA)

AwaitBwait ArunBwait

AwaitBrun

CA<=250 &
CB<=300 &
IA<=150  

dIA=1, dIB=0dIA=0, dIB=0

CA<=250 &
CB<=300  

Fail A

Fail B

CA>=250

C
B

>
=

30
0

re
se

t(
C

B
.I

B
)

C
B

>
=

30
0

re
se

t(
C

B
.I

B
)

CA<=250 &
CB<=300 &
IA<=150 &

IB<=75  

ArunBready

dIA=1,dIB=0dIA=0, dIB=1

CA<=250 &
CB<=300 &

IB<=75  

IA>=100

IA>=100

IB
>

=
50

IB
>

=
50

CB>=30
0CB>=300

CA>=25
0

Fig. 3. Automaton for two periodic tasksA clock variable is required for each periodically trig-gered task. This clock will be reset at the start of theperiod, and will be used to evaluate the enabling of tran-sitions corresponding to the release of the task. An inte-grator variable will also be required for each task, to keeptrack of how much resource time has been used by thattask. When a task is released, the integrator for that taskis reset. In a state where a task is running, the correspond-ing integrator will have rate 1; otherwise the integrator willbe 0. Transitions corresponding to task completions areenabled by the integrator for that task being greater thanthe minimum resource requirement. Invariants are addedto ensure that completion transitions are taken at or beforethe maximum resource requirement. The destination stateof a completion transition takes into account the change ofcondition of the completing task to waiting, and also therelease of any tasks triggered by the completion. As before,if a triggered task is already in a runnable condition thenthe destination state will be a failure state. Figure 3 showsthe timed automaton corresponding to the PG de�nitiongiven below.task A on processor needs [100,150] at priority 0triggered by period 250task B on processor needs [50,75] at priority 1triggered by period 300This example does not demonstrate all features of buildingthe graph, as there is is only one resource, there are no non-preemptible tasks, and there are no completion triggers (asopposed to periodic triggers), as any example which coversall of these yields too large an automaton to present easily.



4V. Response Time AnalysisHaving built an automaton which models the behaviourof the system we wish to analyse, we now discuss how toperform the analysis upon the model. If we are only inter-ested in schedulability then we need to check whether thereis any allowable sequence of events which leads to a failurestate. However, we are interested in more than schedulabil-ity: as we stated earlier, end-to-end response times are ofinterest, particularly for distributed systems. We extendour language slightly to de�ne any end-to-end propertieswe are interested in, using the syntaxproperty name from start name on resource to endname on resourceEach property adds one further state and its associatedtransitions to the automaton. The state is to be usedduring reachability analysis, and is entered only when theproperty is violated. A new clock variable is added, andthis clock is reset at the start of the �rst named task. Allstates which are on the trajectory of this end-to-end re-sponse have a transition to the fail state added (the as-sumption that each task has only one trigger is needed tounambiguously identify whether a state is on a given tra-jectory). Speci�c claims about end-to-end response times(e.g. that the response will occur within 1000 units) canbe checked, by adding a within clause to the end of theproperty. In this case, the enabling condition of the failtransitions will be that the property clock has not exceededthe deadline set.A more sophisticated analysis can be carried out by us-ing the parameterisation mechanism within HyTech [7]. In-stead of giving a literal constant, a declared parameter canbe used instead. The constraint-solving engine which un-derlies the model-checker will then calculate the conditionson the parameter(s) under which reachability can occur. Inour case, the set whose reachability we are interested in isthe failure set, so by �xing the enabling condition on fail-ure transitions to be bounded by a parameter, the model-checker will calculate the least value of the parameter forwhich failure will occur; in other words, the end-to-end re-sponse time. Note that because the property clock is resetat the release of the �rst named task, the response timerecorded will be at most the minimum inter-release time(the period) for this task.This technique has been tried out on a range of examples,from the simple example given in section II up to a systemcontaining six tasks and four messages. As might be ex-pected, the amount of pessimism identi�ed increases withthe length of chains of precedence, and is most marked forlower priority responses. In the largest problem looked atso far, the lower priority response is bounded by 3600 witha standard analysis, but our approach reduces this 1600.It must be noted, however, that these examples are allslightly contrived, in that they have fairly extensive chainsof precedence, and that task and message resource boundsare evenly spread. In a system where the majority of aresponse time is taken up by a single task or message, ourtechnique will not admit such gains.

VI. ConclusionsWe have argued that existing analysis techniques for re-sponse time can yield overly pessimistic results for dis-tributed real-time systems with precedence constraints,and have presented a language (PG) for describing suchsystems. The translation of system de�nitions written inthis language into hybrid automaton models has been dis-cussed, along with the use of parameterised reachabilityanalysis to derive end-to-end response times from the mod-els. This technique has been applied to a range of exampleswith some positive results.Related work has been carried out in two main areas:� The adaptation of standard Response-Time Analysis(RTA) techniques to account for o�sets which can beused to make the analysis less pessimistic. However,Audsley and Burns have shown that when task periodsare co-prime, this technique fails [3].� Corbett [5] has used timed automaton modelling ofAda tasking programs to carry out scheduling analysis.His work is related to ours, but is based on an explicitmodel of the scheduler, yielding less tractable (larger)models, and is only applied to uni-processor systems.Further work is needed in the area of comparing the re-sults we have obtained with those achieved in practice, andalso with those obtained by standard and adapted RTA.There is also the possibility of adapting the approach toinclude more complex scheduling behaviour, such as thatgiven by the priority ceiling protocol or with the use of dy-namically assigned priorities (e.g. earliest-deadline �rst).References[1] R Alur, C Courcebetis, N Halbwachs, T A Henzinger, P-H Ho,X Nicollin, A Olivero, and J Sifakis nad S Yovine. The algorith-mic andalysis of hybrid systems. Theoretical Computer Science,138:3{34, 1995.[2] R Alur and D Dill. Automata for modeling real-time systems.In 17th International Colloquium on Automata, Languages andProgramming (ICALP 90), number 443 in Lecture Notes in Com-puter Science. Springer, 1990.[3] N C Audsley and A Burns. On �xed priority scheduling, o�-sets and co-prime task periods. Information Processing Letters,67(2):65{70, July 1998.[4] N C Audsley, A Burns, R I Davis, K W Tindell, and A J Wellings.Fixed priority pre-emptive scheduling: An historical perspective.Real-Time Systems, 8(2/3):173{198, March/May 1995.[5] J C Corbett. Timing analysis of Ada tasking programs. IEEETransactions on Software Engineering, 22(7):461{483, July 1996.[6] W D Henderson. An holistic approach to performance predictionof distributed real-time can systems. In 5th International CANConference, San Jose, 1998. To Appear.[7] T A Henzinger, P-H Ho, and H Wong-Toi. A user guide tohytech. In E Brinksma, W R Cleaveland, K G Larsen, T Mar-garia, and B Ste�en, editors, Tool and Algorithms for the Con-struction and Analysis of Systems: (TACAS 95), volume 1019 ofLecture Notes in Computer Science, pages 41{71. Springer, 1995.[8] C L Liu and J W Layland. Scheduling algorithms for multipro-gramming in a hard real-time environment. JACM, 20(1):40{61,1973.[9] K Tindell and J Clark. Holistic schedulability analysis for dis-tributed hard real-time systems. Microprocessing and Micropro-gramming, 40(2-3):117{134, April 1994.


