
USING TIMED AUTOMATA FOR RESPONSE TIMEANALYSIS OF DISTRIBUTED REAL-TIMESYSTEMSSteven Bradley � William Henderson �� David Kendall ���Department of Computer Science, Durham University, SouthRoad, Durham, DH1 3LE, UK��Department of Computing and Mathematics, University ofNorthumbria at Newcastle, Ellison Place, Newcastle upon Tyne,NE1 8ST, UKAbstract: Rate Monotonic Analysis (RMA) is a well-established technique for assess-ing schedulability of periodic and sporadic tasks which share a processor resourceusing �xed priority scheduling. Adaptations of this technique have been made toperform Response Time Analysis (RTA), accounting for jitter, blocking, distributedsystems and end-to end timing constraints. However, the nature of the analysis meansthat, while good bounds can be given for uni-processor systems with relatively littleinterdependency, the response times calculated for more complex systems can be veryconservative.An alternative approach to analysing such systems is to build a model which representsthe behaviour of the system more dynamically, taking into account the dependencybetween the tasks. To do this, we introduce a simple language for describing the taskswhich comprise a system and the precedence relationships between them. From this atimed hybrid automaton is generated which can be analysed automatically to predictend-to-end response times.Applying this technique in practice yields promising results, with response times lowerthan those calculated with RTA. However, there is a trade-o� to be made between thecomplexity of the hybrid automaton analysis (which su�ers from the state explosionproblem) and the conservatism of the more standard RTA approach.Keywords: Scheduling algorithms, Timing analysis, Real-time tasks, Real-timeoperating systems.1. INTRODUCTIONSince rate-monotonic scheduling (RMS) and rate-monotonic analysis (RMA) were �rst proposed (Liuand Layland, 1973), work has been carried outto extend the basic model of computation froma set of independent periodic tasks with �xedexecution times sharing a single processor, and toextend the analysis from simple schedulability tosystem-wide end-to-end response times (Audsleyet al., 1993). Audsley et al. (1995) report on thedevelopment of the theory supporting �xed prior-
ity pre-emptive scheduling, including extensionsto account for interdependence of tasks (throughblocking) and the analysis of distributed sys-tems. Analyses of end-to-end response times indistributed systems have been carried out usingTDMA (Tindell and Clark, 1994) and more re-cently with CAN (Henderson, 1998) as the com-munication mechanism.Although more recent work has taken account ofextra delays incurred through interdependence oftasks, ensuring that the analysis remains conser-



vative, one area which has not received so muchattention is to take advantage of the restrictionson possible execution paths brought about byinterdependence. This has meant that predictedresponse times can be overly pessimistic. In thispaper we aim to address the problem of pessimismby explicitly modelling precedence (or ordering)relationships between tasks, and performing anexhaustive analysis of all possible execution pathsthrough a system. The analysis is carried out beperforming reachability analysis on a timed hybridautomaton (Alur et al., 1995).The motivation for this work is demonstratedin section 2 through an example which exhibitspessimism under a standard static response-timeanalysis (RTA) (Audsley et al., 1993). In section 3we introduce our system model, and describe asimple language (PG) in which such systems canbe expressed. We then de�ne a translation fromPG into timed hybrid automata in section 4. Sec-tions 5 and 6 explain how response time analysis iscarried out, and evaluate the results of the analy-sis. Finally, our conclusions and relationships withother work are presented in section 7.2. EXAMPLE OF PESSIMISMOur simple example consists of a distributed sys-tem with two processors connected by a sin-gle CAN-style bus, with non-destructive priority-based arbitration. On processor 1 there are twosimilar tasks, Sender A and Sender B. Thesetasks are periodically triggered, and they eachread a sensor, the values of which need to be sentto corresponding receiver tasks, Receiver A andReceiver B, on processor 2. This is achieved bysending messages Message A and Message B viathe bus. We shall assume that each of the tasksand messages has a �xed resource requirement of200, so we have essentially two clone sub-systems,system A and system B, each of which has aperiodically triggered sender task, which triggersa message upon completion, which in turn triggersa receiver task. The tasks and message of systemA have higher priority than those of system B.In a control situation where the receiver task actsupon the information provided by the sender taskto provide feedback into the controlled system, acrucial factor in determining whether the systemcan be controlled in a stable way is the responsetime from the reading being taken to the controlbeing applied. Therefore, as well as examiningschedulability issues on the processors and bus, itis important to be able to predict the end-to-endresponse time from the start of the sender task tothe end of the receiver task.The analysis of the end-to-end response timefor subsystem A is reasonably straightforward,

but subsystem B is more interesting. A standardresponse-time analysis adds the response timesfor each section, with each section having con-tributions from interference by higher prioritytasks, blocking by lower priority tasks, and exe-cution time. All sections (Sender, Message andReceiver) of subsystem B are subject to interfer-ence of up to 200 time units from the correspond-ing section of subsystem A, giving a total responsetime of 600(interference)+600(execution) = 1200.However, taking into account the precedence con-straints, we can try to construct the actual worstcase for the response time of subsystem B. Thisoccurs when Sender B is released and just failsto complete before Sender A is released, whichthen pre-empts Sender B. The sequence of eventswhich follows is shown in �gure 1. Because ofthe precedence relationships, it is impossible forcompetition to occur between subsystems A andB for all three sections if both systems use theirmaximum resource requirement (200) in all cases.This gives an actual worst-case end-to-end re-sponse time of 1000; this kind of pessimism hasbeen noted experimentally (Henderson, 1998).Such an argument is di�cult to construct convinc-ingly by hand, even for a relatively simple exam-ple, but the consideration of the many di�erentcases that may occur seems a good candidate forautomation. To automate the analysis, however,we �rst need to declare our assumptions aboutthe systems we analyse, and de�ne the languagewe are going to use to describe the systems.3. PG: A SIMPLE LANGUAGE FORDESCRIBING DISTRIBUTED SYSTEMSIn a simple response time analysis, the precedencerelationships between tasks are not made explicit,but the period of a task which is triggered by thecompletion of some other task is inherited fromthe triggering task. Our model of computationis very similar to that used in rate-monotonicstyle analyses, except that we explicitly modelthese precedence relationships. The most basiccomponents in our model are tasks, which can bein one of three states: waiting (to be released),ready (to run, but not running) and running. Eachtask has a simple life cycle: it is released at sometrigger event, after which it competes for someresource (e.g. access to processor) until comple-tion. The time taken to complete will depend onits bounded resource requirement (e.g. processingtime) and upon the competition for the resource.Competition is managed using �xed priority pre-emptive scheduling, although tasks may be de-clared as nonpreemptible, in which case they willretain access to the resource from their �rst accessuntil their completion. A trigger event can either
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Fig. 1. Example of pessimismbe the elapsing of a �xed period, or the completionof some other task (or message). Communicationis assumed to take place via a CAN-style buswith non-destructive priority-based arbitration.In this model, messages have the same propertiesas nonpreemtible tasks. Critical sections can alsobe modelled as nonpreemtible tasks. The followingassumptions are made:� each task/message uses exactly one resource� each task/message has exactly one trigger� no task/message can be triggered by atask/message that it directly or indirectlytriggers (there are no `loops')� bounded resource requirements account forany overheads (such as kernel activity, mem-ory management etc)Important di�erences between this model and amore standard response time analysis model arethat� Precedence (i.e. triggering or ordering) rela-tionships are made explicit, rather than as-suming that all tasks/messages are periodic,with period inherited from their trigger.� Jitter (i.e. possible delay of release afterperiod has elapsed) is not included, as thisis caused by the inheriting of periods fromtriggers: if an `upstream' task or messagedoes not complete in constant time, then itscompletion will not be purely periodic.In summary, each task or message has a name,an associated resource, a bounded resource re-quirement, a priority, and a trigger. These areexpressed using a very simple syntax: the exampleof section 2 can be expressed in PG astask senderA on processor1 needs [100,200]at priority 0triggered by period 1300task senderB on processor1 needs [100,200]at priority 1triggered by period 1400

message messageA on can needs [100,200]at priority 0 nonpreemptibletriggered by senderA on processor1message messageB on can needs [100,200]at priority 1 nonpreemptibletriggered by senderB on processor1task receiverA on processor2 needs [100,200]at priority 0triggered by messageA on cantask receiverB on processor2 needs [100,200]at priority 1triggered by messageB on canThis can also be presented graphically, a morecomplex example is illustrated in �gure 3 wherethe precedence relationships are shown with ar-rows (periodic triggers are shown as squares la-belled with the period). It is this presentation,as an acyclic directed graph where the nodes aretasks or messages, and the edges are precedencerelationships, which gives rise to the name PG:precedence graph.4. MODELLING DISTRIBUTED SYSTEMSWITH HYBRID AUTOMATABefore explaining how we translate system de-scriptions in PG into hybrid automata (sec-tion 4.2), we �rst brie
y review the de�nition ofhybrid automata (section 4.1). For a more detaileddescription including a more formal de�nitionsee Alur et al. (1995).4.1 Hybrid AutomataTimed hybrid automata are an extension of timedautomata (Alur and Dill, 1990). The basic notionis that of a �nite state machine, extended withreal-valued variables. These variables can be usedto form enabling conditions for transitions (bycomparing with a constant value), and to form



invariant conditions for states. Variables can bereset when transitions take place, but cannot beassigned a value other than 0, and cannot becompared with each other. In a standard timedautomaton all variables increase their value in linewith the increase in global time, and are known asclocks. In a hybrid automaton, the rate at which avariable changes may vary with the state, but thisrate will always be a natural number (an integern � 0). For the purposes of this paper, we willonly need to consider rates of 0 or 1. A hybridautomaton is de�ned by� a set of states S� a set of transitions between states T � S�S� a set of variables VA variable valuation is a function v : V ! Realwhich assigns a real value to each variable.Associated with each state in S is� an invariant function which takes a variablevaluation and speci�es whether it is possibleto remain in the state with that valuation� a rate of change for each variable. We willuse the convention that clocks, with variablenames based on C (e.g. C1; Cperiod) alwayshave a rate of 1, so do not need to be givenwith the state information. Integrators, withnames based on I will have a rate of 0 or 1,depending on the state.Associated with each transition in T is� an enabling function which takes a variablevaluation and speci�es whether the transitionis allowed with that valuation� a reset function which speci�es which vari-ables are to be reset to 0 when the transitionis taken.4.2 From PG to hybrid AutomataIn order to translate from a distributed systemdescribed using PG to a hybrid automaton, we�rst of all need to construct the set of states.Each task or message can be in one of three con-ditions: waiting, ready, or running. (In the follow-ing, read `task or message' for `task'). The wholestate space consists of all possible combinationsof each of these conditions for each of the tasks,plus state(s) corresponding to failure. Transitionsbetween states correspond to the triggering orcompletion of tasks. If a task is released in a statewhere it is not already runnable, then a transitionis made to the state where that task is runnable.The condition of each of the other tasks is notchanged, unless the task that has been releasedhas a higher priority than a preemptible runningtask which shares the resource. In this case, thepreemptible task has its condition changed from

running to ready. If a task is released in a statewhere it is already runnable, then this indicatesa problem with schedulability, so a transition ismade to a fail state. Invariants are added to statesto ensure that some transition is made (eithertrigerring or failure) once the period has elapsed.A clock variable is required for each periodicallytriggered task. This clock will be reset at thestart of the period, and will be used to evaluatethe enabling of transitions corresponding to therelease of the task. An integrator variable willalso be required for each task, to keep track ofhow much resource time has been used by thattask. When a task is released, the integrator forthat task is reset. In a state where a task is run-ning, the corresponding integrator will have rate1; otherwise the integrator will be 0. Transitionscorresponding to task completions are enabled bythe integrator for that task being greater thanthe minimum resource requirement. Invariants areadded to ensure that completion transitions aretaken at or before the maximum resource re-quirement has been used. The destination stateof a completion transition takes into account thechange of condition of the completing task towaiting, and also the release of any tasks trig-gered by the completion. As before, if a triggeredtask is already in a runnable condition then thedestination state will be a failure state. Figure 2shows the timed automaton corresponding to thePG de�nition given astask A on processor needs [100,150]at priority 0 triggered by period 250task B on processor needs [50,75]at priority 1 triggered by period 300This example does not demonstrate all features ofbuilding the graph, as there is is only one resource,there are no non-preemptible tasks, and there areno completion triggers (as opposed to periodictriggers), as any example which covers any or allof these yields too large an automaton to presenteasily. See section 6 for a discussion of the size ofthe resulting automaton.5. RESPONSE TIME ANALYSISHaving built an automaton which models thebehaviour of the system we wish to analyse, wenow discuss how to perform the analysis uponthe model. If we are only interested in schedu-lability then we need to check whether there isany allowable sequence of events which leads to afailure state. However, we are interested in morethan schedulability: as we stated earlier, end-to-end response times are of interest, particularlyfor distributed systems. We extend our languageslightly to de�ne any end-to-end properties we areinterested in, such as
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Fig. 2. Automaton for two periodic tasksproperty loop_Afrom start senderA on processor1to end receiverA on processor1for the example shown in �gure 3. Each propertyadds one further state and its associated transi-tions to the automaton. The state is to be usedduring reachability analysis, and is entered onlywhen the property is violated. A new clock vari-able is added, and this clock is reset at the startof the �rst named task. All states which are onthe trajectory of this end-to-end response have atransition to the fail state added (the assumptionthat each task has only one trigger is needed tounambiguously identify whether a state is on agiven trajectory). Speci�c claims about end-to-end response times (e.g. that the response will oc-cur within 1000 units) can be checked, by addinga within clause to the end of the property. In thiscase, the enabling condition of the fail transitionswill be that the property clock has not exceededthe deadline set.A more sophisticated analysis can be carried outby using the parameterisation mechanism withinHyTech (Henzinger et al., 1995). Instead of givinga literal constant, a declared parameter can beused instead. The constraint-solving engine whichunderlies the model-checker will then calculatethe conditions on the parameter(s) under whichreachability can occur. In our case, the set whosereachability we are interested in is the failureset, so by �xing the enabling condition on failuretransitions to be bounded by a parameter, themodel-checker will calculate the least value of theparameter for which failure will occur; in otherwords, the end-to-end response time. Note thatbecause the property clock is reset at the release ofthe �rst named task, the response time recorded

Size RTA PG TcalcA B A B5 1600 1000 1.33 + 3 800 1200 800 1000 244 + 4 1400 2400 1200 1400 1085 + 3 1800 1600 1200 1000 874 + 5 1400 3000 1200 1600 2715 + 4 1800 2600 1400 1400 2805 + 5 1800 3400 1400 1600 1083Table 1. Results for reachability analysiswill be at most the minimum inter-release time(the period) for this task.6. EVALUATION OF RESULTSThere are two main attributes of our techniquewhich we wish to evaluate:(1) the values for response times given(2) the time taken to calculate the responsetimesWe wish to compare the response times with thoseachieved experimentally (we always want to beconservative), and with those achieved using staticanalyses (we want to be less pessimistic). Thecalculation times stand by themselves, as compar-ison with static analyses will almost always beunfavourable: standard RTA is computationallycheap. The question to be asked here is whetherthe reachability problem is tractable, and whetherany gains made in predicting better responsetimes are worth the computational e�ort. To makethe comparison, a range of systems were chosen,with varying sizes (number of tasks and messages)and varying amounts of inter-dependence (lengthand number of chains of precedence). Initially, theassumption that all messages and tasks had thesame bounds on resource requirement was kept.The example of section 2 can be seen as two clonedprecedence chains, each of length three. This ex-ample was extended to chains of length four and�ve, by adding �rst another message, and then afurther task. The largest example considered hadtwo chains of length �ve; the precedence graph forthis example is shown in �gure 3. Periods werechosen to have a GCD of 100, to ensure thatthe results were not sensitive to slight changesin period. Table 1 shows the results obtainedusing on a 233MHz Pentium II under Linux with64MB RAM and 256M swap space. Calculationtimes shown are reported user time (in seconds)to perform the reachability analysis. Time takento build the automaton is not always small, butis insigni�cant compared to the reachability anal-ysis.The examples may appear contrived, as con
ictsare forced by having two essentially identical sys-tems operating. However, this example is one of
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Fig. 3. Two precedence chains of length �vethe simplest that demonstrates the kind of depen-dency that we can usefully identify. Typically, andunsurprisingly, the more dependency that can beidenti�ed in a system, the more can be gainedfrom a detailed analysis of those dependencies.Most bene�t is gained when chains of depen-dency are comprised of equal-length segments; inother words, the advantages of considering globalproperties are maximised when the response timeis not dominated by local properties. Also, theresults show that most bene�t is gained on lower-priority chains of precedence.7. CONCLUSIONSWe have argued that existing analysis techniquesfor response time can yield overly pessimistic re-sults for distributed real-time systems with prece-dence constraints, and have presented a language(PG) for describing such systems. The transla-tion of system de�nitions written in this languageinto hybrid automaton models has been discussed,along with the use of parameterised reachabilityanalysis to derive end-to-end response times fromthe models. This technique has been applied to arange of examples with some positive results.Related work has been carried out in two mainareas:� The adaptation of standard Response-TimeAnalysis (RTA) techniques to account foro�sets which can be used to make the analy-sis less pessimistic (Tindell, 1994). However,Audsley and Burns (1998) have shown thatwhen task periods are co-prime, this tech-nique fails.� Corbett (1996) has used timed automatonmodelling of Ada tasking programs to carryout scheduling analysis. His work is relatedto ours, but is based on an explicit model ofthe scheduler, yielding less tractable (larger)models, and is only applied to uni-processorsystems.
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