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Abstract: Rate Monotonic Analysis (RMA) is a well-established technique for assess-
ing schedulability of periodic and sporadic tasks which share a processor resource
using fixed priority scheduling. Adaptations of this technique have been made to
perform Response Time Analysis (RTA), accounting for jitter, blocking, distributed
systems and end-to end timing constraints. However, the nature of the analysis means
that, while good bounds can be given for uni-processor systems with relatively little
interdependency, the response times calculated for more complex systems can be very
conservative.

An alternative approach to analysing such systems is to build a model which represents
the behaviour of the system more dynamically, taking into account the dependency
between the tasks. To do this, we introduce a simple language for describing the tasks
which comprise a system and the precedence relationships between them. From this a
timed hybrid automaton is generated which can be analysed automatically to predict
end-to-end response times.

Applying this technique in practice yields promising results, with response times lower
than those calculated with RTA. However, there is a trade-off to be made between the
complexity of the hybrid automaton analysis (which suffers from the state explosion

problem) and the conservatism of the more standard RTA approach.
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1. INTRODUCTION

Since rate-monotonic scheduling (RMS) and rate-
monotonic analysis (RMA) were first proposed (Liu
and Layland, 1973), work has been carried out
to extend the basic model of computation from
a set of independent periodic tasks with fixed
execution times sharing a single processor, and to
extend the analysis from simple schedulability to
system-wide end-to-end response times (Audsley
et al., 1993). Audsley et al. (1995) report on the
development of the theory supporting fixed prior-

ity pre-emptive scheduling, including extensions
to account for interdependence of tasks (through
blocking) and the analysis of distributed sys-
tems. Analyses of end-to-end response times in
distributed systems have been carried out using
TDMA (Tindell and Clark, 1994) and more re-
cently with CAN (Henderson, 1998) as the com-
munication mechanism.

Although more recent work has taken account of
extra delays incurred through interdependence of
tasks, ensuring that the analysis remains conser-



vative, one area which has not received so much
attention is to take advantage of the restrictions
on possible execution paths brought about by
interdependence. This has meant that predicted
response times can be overly pessimistic. In this
paper we aim to address the problem of pessimism
by explicitly modelling precedence (or ordering)
relationships between tasks, and performing an
exhaustive analysis of all possible execution paths
through a system. The analysis is carried out be
performing reachability analysis on a timed hybrid
automaton (Alur et al., 1995).

The motivation for this work is demonstrated
in section 2 through an example which exhibits
pessimism under a standard static response-time
analysis (RTA) (Audsley et al., 1993). In section 3
we introduce our system model, and describe a
simple language (PG) in which such systems can
be expressed. We then define a translation from
PG into timed hybrid automata in section 4. Sec-
tions 5 and 6 explain how response time analysis is
carried out, and evaluate the results of the analy-
sis. Finally, our conclusions and relationships with
other work are presented in section 7.

2. EXAMPLE OF PESSIMISM

Our simple example consists of a distributed sys-
tem with two processors connected by a sin-
gle CAN-style bus, with non-destructive priority-
based arbitration. On processor 1 there are two
similar tasks, Sender A and Sender B. These
tasks are periodically triggered, and they each
read a sensor, the values of which need to be sent
to corresponding receiver tasks, Receiver A and
Receiver B, on processor 2. This is achieved by
sending messages Message A and Message B via
the bus. We shall assume that each of the tasks
and messages has a fixed resource requirement, of
200, so we have essentially two clone sub-systems,
system A and system B, each of which has a
periodically triggered sender task, which triggers
a message upon completion, which in turn triggers
a receiver task. The tasks and message of system
A have higher priority than those of system B.

In a control situation where the receiver task acts
upon the information provided by the sender task
to provide feedback into the controlled system, a
crucial factor in determining whether the system
can be controlled in a stable way is the response
time from the reading being taken to the control
being applied. Therefore, as well as examining
schedulability issues on the processors and bus, it
is important to be able to predict the end-to-end
response time from the start of the sender task to
the end of the receiver task.

The analysis of the end-to-end response time
for subsystem A is reasonably straightforward,

but subsystem B is more interesting. A standard
response-time analysis adds the response times
for each section, with each section having con-
tributions from interference by higher priority
tasks, blocking by lower priority tasks, and exe-
cution time. All sections (Sender, Message and
Receiver) of subsystem B are subject to interfer-
ence of up to 200 time units from the correspond-
ing section of subsystem A, giving a total response
time of 600(interference)+600(execution) = 1200.
However, taking into account the precedence con-
straints, we can try to construct the actual worst
case for the response time of subsystem B. This
occurs when Sender B is released and just fails
to complete before Sender A is released, which
then pre-empts Sender B. The sequence of events
which follows is shown in figure 1. Because of
the precedence relationships, it is impossible for
competition to occur between subsystems A and
B for all three sections if both systems use their
maximum resource requirement (200) in all cases.
This gives an actual worst-case end-to-end re-
sponse time of 1000; this kind of pessimism has
been noted experimentally (Henderson, 1998).

Such an argument is difficult to construct convinc-
ingly by hand, even for a relatively simple exam-
ple, but the consideration of the many different
cases that may occur seems a good candidate for
automation. To automate the analysis, however,
we first need to declare our assumptions about
the systems we analyse, and define the language
we are going to use to describe the systems.

3. PG: A SIMPLE LANGUAGE FOR
DESCRIBING DISTRIBUTED SYSTEMS

In a simple response time analysis, the precedence
relationships between tasks are not made explicit,
but the period of a task which is triggered by the
completion of some other task is inherited from
the triggering task. Our model of computation
is very similar to that used in rate-monotonic
style analyses, except that we explicitly model
these precedence relationships. The most basic
components in our model are tasks, which can be
in one of three states: waiting (to be released),
ready (to run, but not running) and running. Each
task has a simple life cycle: it is released at some
trigger event, after which it competes for some
resource (e.g. access to processor) until comple-
tion. The time taken to complete will depend on
its bounded resource requirement (e.g. processing
time) and upon the competition for the resource.
Competition is managed using fixed priority pre-
emptive scheduling, although tasks may be de-
clared as nonpreemptible, in which case they will
retain access to the resource from their first access
until their completion. A trigger event can either
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Fig. 1. Example of pessimism

be the elapsing of a fixed period, or the completion
of some other task (or message). Communication
is assumed to take place via a CAN-style bus
with non-destructive priority-based arbitration.
In this model, messages have the same properties
as nonpreemtible tasks. Critical sections can also
be modelled as nonpreemtible tasks. The following
assumptions are made:

e each task/message uses exactly one resource

e cach task/message has exactly one trigger

e no task/message can be triggered by a
task/message that it directly or indirectly
triggers (there are no ‘loops’)

e bounded resource requirements account for
any overheads (such as kernel activity, mem-
ory management etc)

Important differences between this model and a
more standard response time analysis model are
that

e Precedence (i.e. triggering or ordering) rela-
tionships are made explicit, rather than as-
suming that all tasks/messages are periodic,
with period inherited from their trigger.

e Jitter (i.e. possible delay of release after
period has elapsed) is not included, as this
is caused by the inheriting of periods from
triggers: if an ‘upstream’ task or message
does not complete in constant time, then its
completion will not be purely periodic.

In summary, each task or message has a name,
an associated resource, a bounded resource re-
quirement, a priority, and a trigger. These are
expressed using a very simple syntax: the example
of section 2 can be expressed in PG as

task senderA on processorl needs [100,200]
at priority O
triggered by period 1300

task senderB on processorl needs [100,200]
at priority 1
triggered by period 1400

message messagel on can needs [100,200]
at priority O nonpreemptible
triggered by senderA on processorl

message messageB on can needs [100,200]
at priority 1 nonpreemptible
triggered by senderB on processorl

task receiverA on processor2 needs [100,200]

at priority O
triggered by messageA on can

task receiverB on processor2 needs [100,200]

at priority 1
triggered by messageB on can

This can also be presented graphically, a more
complex example is illustrated in figure 3 where
the precedence relationships are shown with ar-
rows (periodic triggers are shown as squares la-
belled with the period). It is this presentation,
as an acyclic directed graph where the nodes are
tasks or messages, and the edges are precedence
relationships, which gives rise to the name PG:
precedence graph.

4. MODELLING DISTRIBUTED SYSTEMS
WITH HYBRID AUTOMATA

Before explaining how we translate system de-
scriptions in PG into hybrid automata (sec-
tion 4.2), we first briefly review the definition of
hybrid automata (section 4.1). For a more detailed
description including a more formal definition
see Alur et al. (1995).

4.1 Hybrid Automata

Timed hybrid automata are an extension of timed
automata (Alur and Dill, 1990). The basic notion
is that of a finite state machine, extended with
real-valued variables. These variables can be used
to form enabling conditions for transitions (by
comparing with a constant value), and to form



invariant conditions for states. Variables can be
reset when transitions take place, but cannot be
assigned a value other than 0, and cannot be
compared with each other. In a standard timed
automaton all variables increase their value in line
with the increase in global time, and are known as
clocks. In a hybrid automaton, the rate at which a
variable changes may vary with the state, but this
rate will always be a natural number (an integer
n > 0). For the purposes of this paper, we will
only need to consider rates of 0 or 1. A hybrid
automaton is defined by

e a set of states S
e a set of transitions between states T C S x S
e a set of variables V'

A wvariable valuation is a function v : V' — Real
which assigns a real value to each variable.

Associated with each state in S is

e an invariant function which takes a variable
valuation and specifies whether it is possible
to remain in the state with that valuation

e a rate of change for each variable. We will
use the convention that clocks, with variable
names based on C (e.g. C1,Cperiod) always
have a rate of 1, so do not need to be given
with the state information. Integrators, with
names based on [ will have a rate of 0 or 1,
depending on the state.

Associated with each transition in T is

e an enabling function which takes a variable
valuation and specifies whether the transition
is allowed with that valuation

e a reset function which specifies which vari-
ables are to be reset to 0 when the transition
is taken.

4.2 From PG to hybrid Automata

In order to translate from a distributed system
described using PG to a hybrid automaton, we
first of all need to construct the set of states.
Each task or message can be in one of three con-
ditions: waiting, ready, or running. (In the follow-
ing, read ‘task or message’ for ‘task’). The whole
state space consists of all possible combinations
of each of these conditions for each of the tasks,
plus state(s) corresponding to failure. Transitions
between states correspond to the triggering or
completion of tasks. If a task is released in a state
where it is not already runnable, then a transition
is made to the state where that task is runnable.
The condition of each of the other tasks is not
changed, unless the task that has been released
has a higher priority than a preemptible running
task which shares the resource. In this case, the
preemptible task has its condition changed from

running to ready. If a task is released in a state
where it is already runnable, then this indicates
a problem with schedulability, so a transition is
made to a fail state. Invariants are added to states
to ensure that some transition is made (either
trigerring or failure) once the period has elapsed.

A clock variable is required for each periodically
triggered task. This clock will be reset at the
start of the period, and will be used to evaluate
the enabling of transitions corresponding to the
release of the task. An integrator variable will
also be required for each task, to keep track of
how much resource time has been used by that
task. When a task is released, the integrator for
that task is reset. In a state where a task is run-
ning, the corresponding integrator will have rate
1; otherwise the integrator will be 0. Transitions
corresponding to task completions are enabled by
the integrator for that task being greater than
the minimum resource requirement. Invariants are
added to ensure that completion transitions are
taken at or before the maximum resource re-
quirement has been used. The destination state
of a completion transition takes into account the
change of condition of the completing task to
waiting, and also the release of any tasks trig-
gered by the completion. As before, if a triggered
task is already in a runnable condition then the
destination state will be a failure state. Figure 2
shows the timed automaton corresponding to the
PG definition given as

task A on processor needs [100,150]

at priority O triggered by period 250
task B on processor needs [50,75]

at priority 1 triggered by period 300

This example does not demonstrate all features of
building the graph, as there is is only one resource,
there are no non-preemptible tasks, and there are
no completion triggers (as opposed to periodic
triggers), as any example which covers any or all
of these yields too large an automaton to present
easily. See section 6 for a discussion of the size of
the resulting automaton.

5. RESPONSE TIME ANALYSIS

Having built an automaton which models the
behaviour of the system we wish to analyse, we
now discuss how to perform the analysis upon
the model. If we are only interested in schedu-
lability then we need to check whether there is
any allowable sequence of events which leads to a
failure state. However, we are interested in more
than schedulability: as we stated earlier, end-to-
end response times are of interest, particularly
for distributed systems. We extend our language
slightly to define any end-to-end properties we are
interested in, such as
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Fig. 2. Automaton for two periodic tasks

property loop_A
from start senderA on processoril
to end receiverA on processoril

for the example shown in figure 3. Each property
adds one further state and its associated transi-
tions to the automaton. The state is to be used
during reachability analysis, and is entered only
when the property is violated. A new clock vari-
able is added, and this clock is reset at the start
of the first named task. All states which are on
the trajectory of this end-to-end response have a
transition to the fail state added (the assumption
that each task has only one trigger is needed to
unambiguously identify whether a state is on a
given trajectory). Specific claims about end-to-
end response times (e.g. that the response will oc-
cur within 1000 units) can be checked, by adding
a within clause to the end of the property. In this
case, the enabling condition of the fail transitions
will be that the property clock has not exceeded
the deadline set.

A more sophisticated analysis can be carried out
by using the parameterisation mechanism within
HyTech (Henzinger et al., 1995). Instead of giving
a literal constant, a declared parameter can be
used instead. The constraint-solving engine which
underlies the model-checker will then calculate
the conditions on the parameter(s) under which
reachability can occur. In our case, the set whose
reachability we are interested in is the failure
set, so by fixing the enabling condition on failure
transitions to be bounded by a parameter, the
model-checker will calculate the least value of the
parameter for which failure will occur; in other
words, the end-to-end response time. Note that
because the property clock is reset at the release of
the first named task, the response time recorded

Size RTA PG Toate
A B A B
5 1600 1000 1.3
3+ 3 | 800 1200 | 800 1000 | 24
444 | 1400 2400 | 1200 1400 | 108
5+ 3 | 1800 1600 | 1200 1000 | 87
445 | 1400 3000 | 1200 1600 | 271
5+ 4 | 1800 2600 | 1400 1400 | 280
5+ 5 | 1800 3400 | 1400 1600 | 1083
Table 1. Results for reachability analysis

will be at most the minimum inter-release time
(the period) for this task.

6. EVALUATION OF RESULTS

There are two main attributes of our technique
which we wish to evaluate:

(1) the values for response times given
(2) the time taken to calculate the response
times

We wish to compare the response times with those
achieved experimentally (we always want to be
conservative), and with those achieved using static
analyses (we want to be less pessimistic). The
calculation times stand by themselves, as compar-
ison with static analyses will almost always be
unfavourable: standard RTA is computationally
cheap. The question to be asked here is whether
the reachability problem is tractable, and whether
any gains made in predicting better response
times are worth the computational effort. To make
the comparison, a range of systems were chosen,
with varying sizes (number of tasks and messages)
and varying amounts of inter-dependence (length
and number of chains of precedence). Initially, the
assumption that all messages and tasks had the
same bounds on resource requirement was kept.
The example of section 2 can be seen as two cloned
precedence chains, each of length three. This ex-
ample was extended to chains of length four and
five, by adding first another message, and then a
further task. The largest example considered had
two chains of length five; the precedence graph for
this example is shown in figure 3. Periods were
chosen to have a GCD of 100, to ensure that
the results were not sensitive to slight changes
in period. Table 1 shows the results obtained
using on a 233MHz Pentium IT under Linux with
64MB RAM and 256M swap space. Calculation
times shown are reported user time (in seconds)
to perform the reachability analysis. Time taken
to build the automaton is not always small, but
is insignificant compared to the reachability anal-
ysis.

The examples may appear contrived, as conflicts
are forced by having two essentially identical sys-
tems operating. However, this example is one of



2001 2101

processorl

i) ()
an \ /

procedsor2 N

Fig. 3. Two precedence chains of length five

the simplest that demonstrates the kind of depen-
dency that we can usefully identify. Typically, and
unsurprisingly, the more dependency that can be
identified in a system, the more can be gained
from a detailed analysis of those dependencies.
Most benefit is gained when chains of depen-
dency are comprised of equal-length segments; in
other words, the advantages of considering global
properties are maximised when the response time
is not dominated by local properties. Also, the
results show that most benefit is gained on lower-
priority chains of precedence.

7. CONCLUSIONS

We have argued that existing analysis techniques
for response time can yield overly pessimistic re-
sults for distributed real-time systems with prece-
dence constraints, and have presented a language
(PG) for describing such systems. The transla-
tion of system definitions written in this language
into hybrid automaton models has been discussed,
along with the use of parameterised reachability
analysis to derive end-to-end response times from
the models. This technique has been applied to a
range of examples with some positive results.

Related work has been carried out in two main
areas:

e The adaptation of standard Response-Time
Analysis (RTA) techniques to account for
offsets which can be used to make the analy-
sis less pessimistic (Tindell, 1994). However,
Audsley and Burns (1998) have shown that
when task periods are co-prime, this tech-
nique fails.

e Corbett (1996) has used timed automaton
modelling of Ada tasking programs to carry
out scheduling analysis. His work is related
to ours, but is based on an explicit model of
the scheduler, yielding less tractable (larger)
models, and is only applied to uni-processor
systems.

Further work is needed in the area of comparing
the results we have obtained with those achieved
in practice, and also with those obtained by stan-
dard and adapted RTA. There is also the possi-
bility of adapting the approach to include more
complex scheduling behaviour, such as that given
by the priority ceiling protocol or with the use
of dynamically assigned priorities (e.g. earliest-
deadline first).
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